login
A029088
Expansion of 1/((1-x)(1-x^5)(1-x^6)(1-x^10)).
1
1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 5, 6, 7, 7, 7, 9, 11, 12, 13, 13, 16, 18, 20, 21, 22, 25, 28, 30, 32, 33, 38, 41, 44, 46, 48, 53, 58, 61, 64, 66, 73, 78, 83, 86, 89, 96, 103, 108, 113, 116, 125, 132, 139, 144, 149, 158, 167
OFFSET
0,6
COMMENTS
Number of partitions of n into parts 1, 5, 6 and 10. - Ilya Gutkovskiy, May 20 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,0,-1,0,0,1,-2,1,0,0,-1,0,1,0,0,0,1,-1).
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^10)).
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^5) (1 - x^6) (1 - x^10)), {x, 0, 100}], x] (* Vincenzo Librandi, May 27 2017 *)
LinearRecurrence[{1, 0, 0, 0, 1, 0, -1, 0, 0, 1, -2, 1, 0, 0, -1, 0, 1, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 5, 6, 7, 7, 7, 9, 11, 12, 13, 13, 16, 18}, 60] (* Harvey P. Dale, Dec 13 2020 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-x^5)*(1-x^6)*(1-x^10)))); // Vincenzo Librandi, May 27 2017
CROSSREFS
Sequence in context: A329245 A155047 A369451 * A253591 A129263 A035367
KEYWORD
nonn
AUTHOR
STATUS
approved