login
A029087
Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^9)).
1
1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 7, 8, 10, 11, 12, 14, 15, 17, 19, 20, 22, 25, 27, 29, 32, 34, 37, 41, 43, 46, 50, 53, 57, 62, 65, 69, 74, 78, 83, 89, 93, 98, 105, 110, 116, 123, 128, 135, 143, 149, 156, 165, 172
OFFSET
0,6
COMMENTS
Number of partitions of n into parts 1, 5, 6 and 9. - Ilya Gutkovskiy, May 20 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, 0, -1, 0, 1, -1, -1, 1, 0, -1, 0, 1, 0, 0, 0, 1, -1).
FORMULA
G.f.: 1/((1 - x)*(1 - x^5)*(1 - x^6)*(1 - x^9)).
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^5)(1-x^6)(1-x^9)), {x, 0, 100}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, 0, -1, 0, 1, -1, -1, 1, 0, -1, 0, 1, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 7, 8, 10, 11, 12, 14, 15, 17}, 100] (* Harvey P. Dale, Sep 27 2016 *)
CROSSREFS
Sequence in context: A279521 A076896 A275890 * A177497 A029068 A108932
KEYWORD
nonn,easy
AUTHOR
STATUS
approved