login
Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^8)).
1

%I #13 May 26 2017 03:12:38

%S 1,1,1,1,1,2,3,3,4,4,5,6,7,8,9,10,12,13,15,16,18,20,22,24,27,29,32,34,

%T 37,40,44,47,51,54,58,62,67,71,76,80,86,91,97,102,108,114,121,127,135,

%U 141,149,156,164,172,181

%N Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^8)).

%C Number of partitions of n into parts 1, 5, 6 and 8. - _Ilya Gutkovskiy_, May 20 2017

%H Vincenzo Librandi, <a href="/A029086/b029086.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 1, 0, -1, 1, -1, 0, -1, 1, -1, 0, 1, 0, 0, 0, 1, -1).

%F G.f.: 1/((1 - x)*(1 - x^5)*(1 - x^6)*(1 - x^8)).

%t CoefficientList[Series[1/((1-x)(1-x^5)(1-x^6)(1-x^8)),{x,0,100}],x] (* or *) LinearRecurrence[{1,0,0,0,1,0,-1,1,-1,0,-1,1,-1,0,1,0,0,0,1,-1},{1,1,1,1,1,2,3,3,4,4,5,6,7,8,9,10,12,13,15,16},100] (* _Harvey P. Dale_, Dec 08 2016 *)

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_.