login
A029083
Expansion of 1/((1-x)(1-x^4)(1-x^10)(1-x^11)).
0
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 55, 58, 62, 65, 70, 73, 77, 80, 85, 88, 93, 97, 103, 107, 113, 118, 124, 128
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, 10 and 11. - Ilya Gutkovskiy, May 19 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=2, a(5)=2, a(6)=2, a(7)=2, a(8)=3, a(9)=3, a(10)=4, a(11)=5, a(12)=6, a(13)=6, a(14)=7, a(15)=8, a(16)=9, a(17)=9, a(18)=10, a(19)=11, a(20)=13, a(21)=14, a(22)=16, a(23)=17, a(24)=19, a(25)=20, a(n)=a(n-1)+a(n-4)-a(n-5)+a(n-10)-a(n-12)- a(n-14)+ a(n-16)- a(n-21)+a(n-22)+a(n-25)-a (n-26). - Harvey P. Dale, Dec 22 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^4)(1-x^10)(1-x^11)), {x, 0, 90}], x] (* or *) LinearRecurrence[{1, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 1, -1}, {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 13, 14, 16, 17, 19, 20}, 90] (* Harvey P. Dale, Dec 22 2013 *)
CROSSREFS
Sequence in context: A173777 A140436 A236916 * A249040 A153683 A275882
KEYWORD
nonn
AUTHOR
STATUS
approved