login
A029082
Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^12)).
0
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 6, 7, 7, 7, 9, 10, 11, 11, 13, 15, 16, 16, 19, 21, 22, 23, 26, 28, 30, 31, 34, 37, 39, 40, 45, 48, 50, 52, 57, 60, 63, 65, 70, 75, 78, 80, 87, 92, 95, 98, 105, 110, 115, 118, 125, 132
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, 9 and 12. - Ilya Gutkovskiy, May 19 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1,0,0,0,1,-1,0,1,-2,1,0,-1,1,0,0,0,-1,1,0,0,1,-1).
FORMULA
For n>26, a(n)=a(n-1)+a(n-4)-a(n-5)+a(n-9)-a(n-10)+a(n-12)-2*a(n-13)+a(n-14)- a(n-16)+a(n-17)-a(n-21)+a(n-22)+a(n-25)-a(n-26). - Harvey P. Dale, Feb 24 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^4)(1-x^9)(1-x^12)), {x, 0, 80}], x] (* Harvey P. Dale, Feb 24 2013 *)
CROSSREFS
Sequence in context: A124746 A124789 A103372 * A035450 A234537 A029126
KEYWORD
nonn
AUTHOR
STATUS
approved