login
Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^11)).
0

%I #6 May 19 2017 21:51:32

%S 1,1,1,1,2,2,2,2,3,4,4,5,6,7,7,8,9,10,11,12,14,15,17,18,20,21,23,25,

%T 27,29,31,34,36,39,41,44,47,50,53,56,60,63,67,70,75,79,83,87,92,97,

%U 101,106,111,117,122,128,134,140

%N Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^11)).

%C Number of partitions of n into parts 1, 4, 9 and 11. - _Ilya Gutkovskiy_, May 19 2017

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1,0,0,0,1,-1,1,-1,-1,1,-1,1,0,0,0,-1,1,0,0,1,-1).

%K nonn

%O 0,5

%A _N. J. A. Sloane_.