login
Expansion of 1/((1-x)(1-x^4)(1-x^8)(1-x^11)).
0

%I #16 Aug 15 2015 16:59:11

%S 1,1,1,1,2,2,2,2,4,4,4,5,7,7,7,8,11,11,11,13,16,16,17,19,23,23,24,27,

%T 31,31,33,36,41,42,44,48,53,54,57,61,67,69,72,77,84,86,90,95,103,106,

%U 110,116,125,128,133,140,150

%N Expansion of 1/((1-x)(1-x^4)(1-x^8)(1-x^11)).

%C Number of partitions of n into parts 1, 4, 8, and 11. - _Joerg Arndt_, Jul 06 2014

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 1, -2, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1).

%t CoefficientList[Series[1/((1 - x) (1 - x^4) (1 - x^8) (1 - x^11)), {x, 0, 60}], x] (* _Wesley Ivan Hurt_, Jul 06 2014 *)

%t LinearRecurrence[{1,0,0,1,-1,0,0,1,-1,0,1,-2,1,0,-1,1,0,0,-1,1,0,0,1,-1},{1,1,1,1,2,2,2,2,4,4,4,5,7,7,7,8,11,11,11,13,16,16,17,19},60] (* _Harvey P. Dale_, Jul 01 2015 *)

%o (PARI) a(n)=round((n+12)*(2*n^2+48*n+187+33*(-1)^n)/4224+(n+12-(n+7)*(n%2))*(-1)^(n\2)/32) \\ _Tani Akinari_, Jul 06 2014

%o (PARI) Vec(1/((1-x)*(1-x^4)*(1-x^8)*(1-x^11)) + O(x^70)) \\ _Michel Marcus_, Jul 06 2014

%K nonn

%O 0,5

%A _N. J. A. Sloane_.