login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029079 Expansion of 1/((1-x)(1-x^4)(1-x^8)(1-x^11)). 0
1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 5, 7, 7, 7, 8, 11, 11, 11, 13, 16, 16, 17, 19, 23, 23, 24, 27, 31, 31, 33, 36, 41, 42, 44, 48, 53, 54, 57, 61, 67, 69, 72, 77, 84, 86, 90, 95, 103, 106, 110, 116, 125, 128, 133, 140, 150 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Number of partitions of n into parts 1, 4, 8, and 11. - Joerg Arndt, Jul 06 2014

LINKS

Table of n, a(n) for n=0..56.

Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 1, -2, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1).

MATHEMATICA

CoefficientList[Series[1/((1 - x) (1 - x^4) (1 - x^8) (1 - x^11)), {x, 0, 60}], x] (* Wesley Ivan Hurt, Jul 06 2014 *)

LinearRecurrence[{1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 1, -2, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1}, {1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 5, 7, 7, 7, 8, 11, 11, 11, 13, 16, 16, 17, 19}, 60] (* Harvey P. Dale, Jul 01 2015 *)

PROG

(PARI) a(n)=round((n+12)*(2*n^2+48*n+187+33*(-1)^n)/4224+(n+12-(n+7)*(n%2))*(-1)^(n\2)/32) \\ Tani Akinari, Jul 06 2014

(PARI) Vec(1/((1-x)*(1-x^4)*(1-x^8)*(1-x^11)) + O(x^70)) \\ Michel Marcus, Jul 06 2014

CROSSREFS

Sequence in context: A092508 A032544 A200675 * A035398 A104409 A214628

Adjacent sequences:  A029076 A029077 A029078 * A029080 A029081 A029082

KEYWORD

nonn,changed

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 15:13 EDT 2015. Contains 261125 sequences.