login
Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^12)).
0

%I #18 Mar 24 2020 21:18:35

%S 1,1,1,2,2,2,3,4,4,5,6,6,8,9,10,12,13,14,16,18,19,22,24,25,29,31,33,

%T 37,40,42,46,50,52,57,61,64,70,74,78,84,89,93,100,106,110,118,124,129,

%U 138,145,151,160,168,174,184,193,200,211,220,228,240

%N Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^12)).

%C Number of partitions of n into parts 1, 3, 7, and 12. - _Joerg Arndt_, May 22 2014

%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1,0,0,1,-1,0,-1,1,1,-1,0,-1,1,0,0,-1,1,0,1,-1).

%t CoefficientList[Series[1/((1-x)(1-x^3)(1-x^7)(1-x^12)),{x,0,60}],x] (* _Harvey P. Dale_, Jul 12 2012 *)

%o (PARI) a(n)=floor((2*n^3+69*n^2+692*n+3220)/3024+((n\3+1)*[1,1,-2]/36+[25,11,-42]/216)[n%3+1]) \\ _Tani Akinari_, May 21 2014

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_, Dec 11 1999