login
Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^11)).
0

%I #15 Aug 28 2022 17:16:33

%S 1,1,1,2,2,2,3,4,4,5,6,7,8,9,11,12,13,15,17,18,20,23,25,27,30,33,35,

%T 38,42,45,48,52,56,60,64,69,74,78,83,89,94,99,106,112,118,125,132,139,

%U 146,154,162,170,178,187,196

%N Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^11)).

%C Number of partitions of n into parts 1, 3, 7, and 11. - _Joerg Arndt_, May 19 2014

%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1,0,0,1,-1,0,-1,2,-1,0,-1,1,0,0,-1,1,0,1,-1).

%t CoefficientList[Series[1/((1-x)(1-x^3)(1-x^7)(1-x^11)), {x, 0, 90}], x] (* _Jinyuan Wang_, Mar 24 2020 *)

%t LinearRecurrence[{1,0,1,-1,0,0,1,-1,0,-1,2,-1,0,-1,1,0,0,-1,1,0,1,-1},{1,1,1,2,2,2,3,4,4,5,6,7,8,9,11,12,13,15,17,18,20,23},60] (* _Harvey P. Dale_, Aug 28 2022 *)

%o (PARI) a(n)=floor((n^3+33*n^2+318*n+1494)/1386+[2,1,-1,0,1,-1,-2][n%7+1]/7) \\ _Tani Akinari_, May 18 2014

%o (PARI) Vec(1/((1-x)*(1-x^3)*(1-x^7)*(1-x^11))+O(x^100)) \\ _Michel Marcus_, May 19 2014

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_