login
A029043
Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^11)).
0
1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 26, 29, 32, 35, 38, 42, 46, 50, 54, 58, 63, 68, 73, 79, 84, 90, 97, 103, 110, 117, 124, 132, 140, 148, 157, 166, 175, 185, 195, 205, 216, 227, 238, 250
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 5 and 11. - Ilya Gutkovskiy, May 14 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,1,-1,0,-1,1,0,1,-1,0,-1,1,-1,1,0,1,-1).
FORMULA
a(n) = floor((n^3+30*n^2+371*n+1188-330*floor((n+2)/3))/990). - Tani Akinari, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^11)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 0, 1, -1, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 1, -1}, {1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23}, 60] (* Harvey P. Dale, Mar 09 2019 *)
PROG
(PARI) a(n)=(n^3+30*n^2+371*n+1188-(n+2)\3*330)\990
CROSSREFS
Sequence in context: A259198 A011880 A029044 * A296371 A337601 A340283
KEYWORD
nonn,easy
AUTHOR
STATUS
approved