login
A029039
Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^6)).
0
1, 1, 1, 2, 2, 3, 5, 5, 6, 8, 9, 11, 14, 15, 17, 21, 23, 26, 31, 33, 37, 43, 46, 51, 58, 62, 68, 76, 81, 88, 98, 104, 112, 123, 130, 140, 153, 161, 172, 186, 196, 209, 225, 236, 250, 268, 281, 297, 317, 331, 349, 371, 387, 407, 431, 449, 471, 497, 517, 541
OFFSET
0,4
COMMENTS
Poincaré series [or Poincare series]: 1/((1-x^2)(1-x^6)(1-x^10)(1-x^12)).
Number of partitions of n into parts 1, 3, 5 and 6. - Ilya Gutkovskiy, May 14 2017
REFERENCES
G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, 1988; p. 192, Note 4.
S. Nagaoka, On the ring of Hilbert modular forms over Z, J. Math. Soc. Japan, 35 (1983) 589-608 + errata.
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^3) (1 - x^5) (1 - x^6)), {x, 0, 100}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
CROSSREFS
Sequence in context: A319476 A140200 A289199 * A316185 A131429 A105605
KEYWORD
nonn
STATUS
approved