login
A029035
Expansion of 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^9)).
1
1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 9, 10, 13, 15, 16, 19, 22, 24, 28, 31, 34, 39, 43, 46, 52, 57, 61, 68, 74, 79, 87, 94, 100, 109, 117, 124, 135, 144, 152, 164, 175, 184, 197, 209, 220, 235, 248, 260, 277, 292, 305, 323
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 4 and 9. - Ilya Gutkovskiy, May 14 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,-1,0,-1,1,1,-1,0,-1,0,1,0,1,-1).
MATHEMATICA
(* From Harvey P. Dale, Jun 06 2017: (Start) *)
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^9)), {x, 0, 60}], x]
LinearRecurrence[{1, 0, 1, 0, -1, 0, -1, 1, 1, -1, 0, -1, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 9, 10, 13, 15, 16, 19, 22}, 60] (* End *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^9)))); // Vincenzo Librandi, Jun 07 2017
CROSSREFS
Sequence in context: A182229 A017864 A188937 * A153178 A118302 A355358
KEYWORD
nonn,easy
STATUS
approved