The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029016 Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^12)). 1
 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 18, 20, 23, 26, 29, 32, 36, 39, 44, 47, 53, 57, 63, 68, 74, 80, 87, 93, 101, 107, 116, 123, 133, 141, 151, 160, 171, 181, 193, 203, 216, 227, 241, 253, 268, 281, 297, 311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of partitions of n into parts 1, 2, 5, and 12. - Joerg Arndt, May 20 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1). MAPLE M := Matrix(20, (i, j)-> if (i=j-1) or (j=1 and member(i, [1, 2, 5, 8, 12, 15, 18, 19])) then 1 elif j=1 and member(i, [3, 6, 7, 13, 14, 17, 20]) then -1 else 0 fi); a := n -> (M^(n))[1, 1]; seq (a(n), n=0..51); # Alois P. Heinz, Jul 25 2008 MATHEMATICA s = 1/((1-x)(1-x^2)(1-x^5)(1-x^12)) + O[x]^100; CoefficientList[s, x] (* Jean-François Alcover, Nov 05 2015 *) LinearRecurrence[{1, 1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 18, 20, 23, 26, 29, 32}, 80] (* Harvey P. Dale, Jun 22 2017 *) PROG (PARI) a(n)=floor((2*n^3+60*n^2+513*n+1773)/1440+(n+1)*(-1)^n/96+[0, -1, 0, 1, 0, 2][n%6+1]*(-1)^(n\6)/6) \\ Tani Akinari, May 19 2014 CROSSREFS Sequence in context: A062420 A089197 A017874 * A290807 A121385 A029015 Adjacent sequences:  A029013 A029014 A029015 * A029017 A029018 A029019 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 18:17 EDT 2020. Contains 334787 sequences. (Running on oeis4.)