login
A028938
Negative of numerator of y-coordinate of (2n)*P where P is generator for rational points on curve y^2 + y = x^3 - x.
4
0, 3, -14, 69, 2065, -28888, 2616119, -332513754, 8280062505, 18784454671297, -10663732503571536, 8938035295591025771, 31636113722016288336230, -41974401721854929811774227, 754388827236735824355996347601
OFFSET
1,2
LINKS
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2-a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028942(2n). - Seiichi Manyama, Nov 19 2016
EXAMPLE
4P = (2, -3).
CROSSREFS
Cf. A028936, A028937, A028939 (denominator), A028942.
Sequence in context: A190725 A151325 A020065 * A038213 A261207 A161939
KEYWORD
sign,frac
STATUS
approved