login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028916 Primes of form a^2 + b^4. 10
2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

John Friedlander and Henryk Iwaniec proved that there are infinitely many such primes.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial

Wikipedia, Friedlander-Iwaniec theorem

MATHEMATICA

nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *)

PROG

(PARI) list(lim)=my(v=List([2]), t); for(a=1, sqrt(lim\=1), forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4; if(isprime(t), listput(v, t)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Jun 12 2013

CROSSREFS

Cf. A078523.

Sequence in context: A125822 A025537 A245784 * A100272 A107630 A078523

Adjacent sequences:  A028913 A028914 A028915 * A028917 A028918 A028919

KEYWORD

nonn

AUTHOR

Warut Roonguthai

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 21 23:13 EDT 2014. Contains 248381 sequences.