login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028916 Primes of form a^2 + b^4. 10
2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

John Friedlander and Henryk Iwaniec proved that there are infinitely many such primes.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial

Wikipedia, Friedlander-Iwaniec theorem

MATHEMATICA

nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *)

PROG

(PARI) list(lim)=my(v=List([2]), t); for(a=1, sqrt(lim\=1), forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4; if(isprime(t), listput(v, t)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Jun 12 2013

CROSSREFS

Cf. A078523.

Sequence in context: A025537 A245784 A247068 * A100272 A107630 A078523

Adjacent sequences:  A028913 A028914 A028915 * A028917 A028918 A028919

KEYWORD

nonn

AUTHOR

Warut Roonguthai

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 08:26 EST 2014. Contains 252299 sequences.