This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028916 Friedlander-Iwaniec primes: Primes of form a^2 + b^4. 32
 2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS John Friedlander and Henryk Iwaniec proved that there are infinitely many such primes. A256852(A049084(a(n))) > 0. - Reinhard Zumkeller, Apr 11 2015 Primes in A111925. - Robert Israel, Oct 02 2015 Its intersection with A185086 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015 Cunningham calls these semi-quartan primes. - Charles R Greathouse IV, Aug 21 2017 Primes of the form (x^2 + y^2)/2, where x > y > 0, such that (x-y)/2 or (x+y)/2 is square. - Thomas Ordowski, Dec 04 2017 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Art of Problem Solving, Fermat's Two Squares Theorem A. J. C. Cunningham, High quartan factorisations and primes, Messenger of Mathematics 36 (1907), pp. 145-174. John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial, Proc. Nat. Acad. Sci. 94  (1997), 1054-1058. Charles R Greathouse IV, Tables of special primes Wikipedia, Friedlander-Iwaniec theorem EXAMPLE 2 = 1^2 + 1^4. 5 = 2^2 + 1^4. 17 = 4^2 + 1^4 = 1^2 + 2^4. MAPLE N:= 10^5: # to get all terms <= N S:= {seq(seq(a^2+b^4, a = 1 .. floor((N-b^4)^(1/2))), b=1..floor(N^(1/4)))}: sort(convert(select(isprime, S), list)); # Robert Israel, Oct 02 2015 MATHEMATICA nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *) PROG (PARI) list(lim)=my(v=List([2]), t); for(a=1, sqrt(lim\=1), forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4; if(isprime(t), listput(v, t)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Jun 12 2013 (Haskell) a028916 n = a028916_list !! (n-1) a028916_list = map a000040 \$ filter ((> 0) . a256852) [1..] -- Reinhard Zumkeller, Apr 11 2015 CROSSREFS Cf. A078523, A111925. Cf. A000290,  A000583, A000040, A256852, A256863 (complement), A002645 (subsequence), subsequence of A247857. Primes of form n^2 + b^4, b fixed: A002496 (b = 1), A243451 (b = 2), A256775 (b = 3), A256776 (b = 4), A256777 (b = 5), A256834 (b = 6), A256835 (b = 7), A256836 (b = 8), A256837 (b = 9), A256838 (b = 10), A256839 (b = 11), A256840 (b = 12), A256841 (b = 13). Sequence in context: A025537 A245784 A247068 * A100272 A107630 A078523 Adjacent sequences:  A028913 A028914 A028915 * A028917 A028918 A028919 KEYWORD nonn AUTHOR EXTENSIONS Title expanded by Jonathan Sondow, Oct 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 02:13 EDT 2018. Contains 315271 sequences. (Running on oeis4.)