%I
%S 11,31,59,139,191,251,479,571,1019,1151,1291,1439,1759,1931,2111,2699,
%T 3359,4091,5179,5471,6079,6719,8831,10399,12539,13451,14879,17419,
%U 20731,23099,26891,27551,28219,30271,30971,33119,33851,34591
%N Primes of form k^2  5.
%C These numbers are prime in Z but not in Z[sqrt(5)] nor in Z[phi] (where phi is the golden ratio), since (k  sqrt(5))(k + sqrt(5)) = ((k + 1)  2*phi)((k  1) + 2*phi) = k^2  5.  _Alonso del Arte_, Aug 27 2013
%H Vincenzo Librandi, <a href="/A028877/b028877.txt">Table of n, a(n) for n = 1..8000</a>
%H P. De Geest, <a href="http://www.worldofnumbers.com/consemor.htm">Palindromic Quasipronics of the form n(n+x)</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NearSquarePrime.html">NearSquare Prime</a>
%e 31 is in the sequence as it is equal to 6^2  5.
%e 59 is in the sequence since it is equal to 8^2  5.
%e 95 is not in the sequence though it does equal 10^2  5.
%t Select[Table[n^2  5, {n, 200}], PrimeQ] (* _Harvey P. Dale_, Jan 17 2011 *)
%o (MAGMA) [a: n in [1..300]  IsPrime(a) where a is n^25]; // _Vincenzo Librandi_, Dec 01 2011
%Y Cf. A028875 (superset), A028876.
%K nonn,easy
%O 1,1
%A _Patrick De Geest_
