

A028877


Primes of form k^2  5.


4



11, 31, 59, 139, 191, 251, 479, 571, 1019, 1151, 1291, 1439, 1759, 1931, 2111, 2699, 3359, 4091, 5179, 5471, 6079, 6719, 8831, 10399, 12539, 13451, 14879, 17419, 20731, 23099, 26891, 27551, 28219, 30271, 30971, 33119, 33851, 34591
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These numbers are prime in Z but not in Z[sqrt(5)] nor in Z[phi] (where phi is the golden ratio), since (k  sqrt(5))(k + sqrt(5)) = ((k + 1)  2*phi)((k  1) + 2*phi) = k^2  5.  Alonso del Arte, Aug 27 2013


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..8000
P. De Geest, Palindromic Quasipronics of the form n(n+x)
Eric Weisstein's World of Mathematics, NearSquare Prime


EXAMPLE

31 is in the sequence as it is equal to 6^2  5.
59 is in the sequence since it is equal to 8^2  5.
95 is not in the sequence though it does equal 10^2  5.


MATHEMATICA

Select[Table[n^2  5, {n, 200}], PrimeQ] (* Harvey P. Dale, Jan 17 2011 *)


PROG

(Magma) [a: n in [1..300]  IsPrime(a) where a is n^25]; // Vincenzo Librandi, Dec 01 2011


CROSSREFS

Cf. A028875 (superset), A028876.
Sequence in context: A144364 A226922 A031372 * A087394 A196117 A040162
Adjacent sequences: A028874 A028875 A028876 * A028878 A028879 A028880


KEYWORD

nonn,easy


AUTHOR

Patrick De Geest


STATUS

approved



