The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028872 a(n) = n^2 - 3. 27
 1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Number of edges in the join of two star graphs, each of order n, S_n * S_n. - Roberto E. Martinez II, Jan 07 2002 Number of vertices in the hexagonal triangle T(n-2) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014 Positive X values of solutions to the equation X^3 + (X - 3)^2 + X - 6 = Y^2. To prove that X = n^2 + 4n + 1: Y^2 = X^3 + (X - 3)^2 + X - 6 = X^3 + X^2 - 5X + 3 = (X + 3)(X^2 - 2X + 1) = (X + 3)*(X - 1)^2 it means: X = 1 or (X + 3) must be a perfect square, so X = k^2 - 3 with k >= 2. we can put: k = n + 2, which gives: X = n^2 + 4n + 1 and Y = (n + 2)(n^2 + 4n). - Mohamed Bouhamida, Nov 29 2007 Equals binomial transform of [1, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008 Let C = 2 + sqrt(3) = 3.732...; and 1/C = 0.267...; then a(n) = (n - 2 + C) * (n - 2 + 1/C). Example: a(5) = 46 = (5 + 3.732...)*(5 + 0.267...). - Gary W. Adamson, Jul 29 2009 a(n), n >= 0, with a(0) = -3 and a(1) = -2, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 12 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013 If A(n) is a 3 X 3 Khovanski matrix having 1 below the main diagonal, n on the main diagonal, and n^3 above the main diagonal, then (Det(A(n)) - 2*n^3) / n^4 = a(n). - Gary Detlefs, Nov 12 2013 Imagine a large square containing four smaller square "holes" of equal size: Let x = large square side and y = smaller square side; considering instances where the area of this shape [x^2 - 4*y^2] equals the length of its perimeter, [4*(x + 4*y)]. When y is an integer n, the above equation is satisfied by x = 2 + 2*sqrt(a(n)). - Peter M. Chema, Apr 10 2016 a(n+1) is the number of distinct linear partitions of 2 X n grid points. A linear partition is a way to partition given points by a line into two nonempty subsets. Details can be found in Pan's link. - Ran Pan, Jun 06 2016 Numbers represented as 141 in number base B: 141(5) = 46, 141(6) = 61 and, if 'digits' larger than (B-1) are allowed, 141(2) = 13, 141(3) = 22, 141(4) = 33. - Ron Knott, Nov 14 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 2..5000 Patrick De Geest, Palindromic Quasipronics of the form n(n+x). Q. H. He, J. Z. Gu, S. J. Xu, and W. H. Chan, Hosoya polynomials of hexagonal triangles and trapeziums, MATCH, Commun. Math. Comput. Chem. 72, 2014, 835-843. - Emeric Deutsch, Nov 14 2014 Ran Pan, Exercise V, Project P. Eric Weisstein's World of Mathematics, Near-Square Prime. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA From R. J. Mathar, Apr 28 2008: (Start) O.g.f.: x^2*(1 + 3*x - 2*x^2)/(1 - x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End) a(n+1) = floor((n^4 + 2*n^3)/(n^2 + 1)). - Gary Detlefs, Feb 20 2010, corrected by Charles R Greathouse IV, Mar 18 2022 a(n) = a(n-1) + 2*n-1 (with a(2)=1). - Vincenzo Librandi, Nov 18 2010 a(n)*a(n-1) + 3 = (a(n) - n)^2 = A014209(n-2)^2. - Bruno Berselli, Dec 07 2011 a(n) = A000290(n) - 3. - Michel Marcus, Nov 13 2013 Sum_{n>=2} 1/a(n) = 2/3 - Pi*cot(sqrt(3)*Pi)/(2*sqrt(3)) = 1.476650189986093617... . - Vaclav Kotesovec, Apr 10 2016 E.g.f.: (x^2 + x - 3)*exp(x) + 2*x + 3. - G. C. Greubel, Jul 19 2017 Sum_{n>=2} (-1)^n/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/6 = 0.8826191087... - Amiram Eldar, Nov 04 2020 From Amiram Eldar, Jan 29 2021: (Start) Product_{n>=2} (1 + 1/a(n)) = sqrt(6)*csc(sqrt(3)*Pi)*sin(sqrt(2)*Pi). Product_{n>=3} (1 - 1/a(n)) = -Pi*csc(sqrt(3)*Pi)/(4*sqrt(3)). (End) MAPLE A028872 := proc(n) n^2-3; end proc: # R. J. Mathar, Aug 23 2011 MATHEMATICA Range[2, 60]^2 - 3 (* or *) LinearRecurrence[{3, -3, 1}, {1, 6, 13}, 60] (* Harvey P. Dale, May 09 2013 *) PROG (Sage) [lucas_number1(3, n, 3) for n in range(2, 50)] # Zerinvary Lajos, Jul 03 2008 (PARI) a(n)=n^2-3 \\ Charles R Greathouse IV, Aug 23 2011 (PARI) x='x+O('x^99); Vec(x^2*(-1-3*x+2*x^2)/(-1+x)^3) \\ Altug Alkan, Apr 10 2016 CROSSREFS Essentially the same: A123968, A267874. Cf. A117950, A132411, A132414, A002522. Sequence in context: A101247 A243655 A072212 * A049718 A036707 A054311 Adjacent sequences: A028869 A028870 A028871 * A028873 A028874 A028875 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:07 EST 2022. Contains 358578 sequences. (Running on oeis4.)