login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028560 a(n) = n*(n + 6), also numbers a(n) such that 9*(9 + a(n)) is a perfect square. 34
0, 7, 16, 27, 40, 55, 72, 91, 112, 135, 160, 187, 216, 247, 280, 315, 352, 391, 432, 475, 520, 567, 616, 667, 720, 775, 832, 891, 952, 1015, 1080, 1147, 1216, 1287, 1360, 1435, 1512, 1591, 1672, 1755, 1840, 1927, 2016, 2107, 2200, 2295, 2392 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sequence allows us to find X values of the equation: X + (X + 3)^2 + (X + 6)^3 = Y^2. To prove that X = n^2 + 6n: Y^2 = X + (X + 3)^2 + (X + 6)^3 = X^3 + 19*X^2 + 115X + 225 = (X + 9)(X^2 + 10X + 25) = (X + 9)*(X + 5)^2 it means: (X + 9) must be a perfect square, so X = k^2 - 9 with k>=3. we can put: k = n + 3, which gives: X = n^2 + 6n and Y = (n + 3)(n^2 + 6n + 5). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Nov 12 2007

Number of units of a(n) belongs to a periodic sequence: 0, 7, 6, 7, 0, 5, 2, 1, 2, 5. - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 04 2009

a(n) = A028884(n) - 1. - Reinhard Zumkeller, Apr 07 2013

a(m) where m is a positive integer are the only positive integer values of t for which the Binet-de Moivre Formula of the recurrence b(n)=6*b(n-1)+t*b(n-2) with b(0)=0 and b(1)=1 has a root which is a square. In particular, sqrt(6^2+4*t) is an integer since 6^2+4*t=6^2+4*a(m)=(2*m+6)^2. Thus, the charcteristic roots are k1=6+m and k2=-m. - Felix P. Muga II, Mar 27 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

P. De Geest, Palindromic Quasipronics of the form n(n+x)

M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.

Wikipedia, Hydrogen spectral series

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = (n+3)^2 - 3^2 = n*(n+6).

G.f.: x*(7-5*x)/(1-x)^3.

a(n) = 2*n + a(n-1) + 5. - Vincenzo Librandi, Aug 05 2010

sum_{n>=1} 1/a(n) = 49/120 = 0.4083333... - R. J. Mathar, Mar 22 2011

E.g.f.: x*(x+7)*exp(x). - G. C. Greubel, Aug 19 2017

MAPLE

A028560:=n->n*(n + 6); seq(A028560(n), n=0..100); # Wesley Ivan Hurt, Mar 27 2014

MATHEMATICA

Table[n(n + 6), {n, 0, 65}] (* or *) Select[ Range[0, 5000], IntegerQ[ Sqrt[9(9 + #)]]& ]

PROG

(Sage) [lucas_number2(2, n, 4-n) for n in xrange(2, 49)] # Zerinvary Lajos, Mar 19 2009

(Haskell)

a028560 n = n * (n + 6)  -- Reinhard Zumkeller, Apr 07 2013

(PARI) a(n)=n*(n+6) \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

a(n-3), n>=4, third column (used for the Paschen series of the hydrogen atom) of triangle A120070.

Cf. A005563.

Sequence in context: A017245 A052221 A119461 * A190530 A133694 A024627

Adjacent sequences:  A028557 A028558 A028559 * A028561 A028562 A028563

KEYWORD

nonn,easy

AUTHOR

Patrick De Geest

EXTENSIONS

Edited by Robert G. Wilson v, Feb 06 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 22 22:38 EST 2018. Contains 298093 sequences.