|
|
A028555
|
|
Numbers n such that n*(n + 4) is a palindrome.
|
|
0
|
|
|
0, 1, 7, 14, 21, 33, 44, 144, 235, 269, 524, 1123, 1452, 1582, 5412, 8338, 8459, 11063, 11223, 23255, 73491, 145544, 262808, 266737, 281349, 1659022, 2705669, 3504083, 5040882, 7395091, 8308388, 14554452
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..32.
Patrick De Geest, Palindromic Quasipronics of the form n(n+x)
Erich Friedman, What's Special About This Number? (See entries 1452, 1582, 5412, 8338, 8459.)
|
|
MATHEMATICA
|
Select[Range[0, 9999], PalindromeQ[#^2 + 4#] &] (* Alonso del Arte, Nov 10 2019 *)
|
|
PROG
|
(Scala) def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0
(0 to 9999).filter((n: Int) => palQ(n * n + 4 * n)) // Alonso del Arte, Nov 10 2019
|
|
CROSSREFS
|
Cf. A028336.
Sequence in context: A189931 A164005 A100451 * A061823 A018890 A118502
Adjacent sequences: A028552 A028553 A028554 * A028556 A028557 A028558
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Patrick De Geest
|
|
STATUS
|
approved
|
|
|
|