login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028552 a(n) = n*(n+3). 50
0, 4, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, 208, 238, 270, 304, 340, 378, 418, 460, 504, 550, 598, 648, 700, 754, 810, 868, 928, 990, 1054, 1120, 1188, 1258, 1330, 1404, 1480, 1558, 1638, 1720, 1804, 1890, 1978, 2068 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

n(n-3), for n >= 3, is the number of [body] diagonals of an n-gonal prism. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)

a(n) = A028387(n)-1. Half of the difference between n(n+1)(n+2)(n+3) and the largest square less than it. Calling this difference "SquareMod": a(n) = (1/2)*SquareMod(n(n+1)(n+2)(n+3)). - Rainer Rosenthal, Sep 04 2004

n != -2 such that x^4 + x^3 - n*x^2 + x + 1 is reducible over the integers. Starting at 10: n such that x^4 + x^3 - n*x^2 + x + 1 is a product of irreducible quadratic factors over the integers. - James R. Buddenhagen, Apr 19 2005

If a 3-set Y and a 3-set Z, having two element in common, are subsets of an n-set X then a(n-4) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007

Starting with offset 1 = binomial transform of [4, 6, 2, 0, 0, 0,...]. - Gary W. Adamson, Jan 09 2009

a(A002522(n)) = A156798(n). - Reinhard Zumkeller, Feb 16 2009

The sequence provides all nonnegative integers m such that 4*m + 9 is a square. - Vincenzo Librandi, Mar 03 2013

The second order linear recurrence relations b(n)=3*b(n-1) + a(m-3)*b(n-2), n>=2, b(0)=0, b(1)=1, have closed form solutions involving only powers of m and 3-m where m>=4 is a positive integer; and lim b(n+1)/b(n)=4 as n approaches infinity. - Felix P. Muga II, Mar 18 2014

If a rook is placed at a corner of an n X n chessboard, the expected number of moves for it to reach the opposite corner is a(n-1). (See Math StackExchange link.) - Eric M. Schmidt, Oct 29 2014

Partial sums of the even composites (which are A005843 without the 2). - R. J. Mathar, Sep 09 2015

REFERENCES

F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000

P. De Geest, Palindromic Quasipronics of the form n(n+x)

Math StackExchange, Expected number of turns for a rook to move to top right-most corner?

Milan Janjic, Two Enumerative Functions

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 2*A000096(n).

a(n) = 2n+a(n-1)+2 for n>0, with a(0)=0. - Vincenzo Librandi, Aug 05 2010

Sum_{n>=1} 1/a(n) = 11/18 via sum_{n>=0} 1/(n+x)/(n+y) = (psi(x)-psi(y))/ (x-y). - R. J. Mathar, Mar 22 2011

G.f.: 2*x*(2 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 31 2011

a(0)=0, a(1)=4, a(2)=10, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Feb 05 2012

a(n) = 4*C(n+1,2)-2*C(n,2) for n>=0. - Felix P. Muga II, Mar 11 2014

a(-3 - n) = a(n) for all n in Z. - Michael Somos, Mar 18 2014

EXAMPLE

G.f. = 4*x + 10*x^2 + 18*x^3 + 28*x^4 + 40*x^5 + 54*x^6 + 70*x^7 + 88*x^8 + ...

MAPLE

A028552 := proc(n) n*(n+3); end proc: # R. J. Mathar, Jan 29 2011

MATHEMATICA

lst={}; Do[AppendTo[lst, n*(n+3)], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)

LinearRecurrence[{3, -3, 1}, {0, 4, 10}, 50] (* Harvey P. Dale, Feb 05 2012 *)

Table[ChineseRemainder[{n, n + 1}, {n + 2, n + 3}], {n, -1, 80}] (* Zak Seidov, Oct 25 2014 *)

PROG

(MAGMA) [n*(n+3): n in [0..150]]; // Vincenzo Librandi, Apr 21 2011

(PARI) a(n)=n*(n+3) \\ Charles R Greathouse IV, Mar 16, 2012

(Maxima) makelist(n*(n+3), n, 0, 20); /* Martin Ettl, Jan 22 2013 */

CROSSREFS

Cf. A000096, A002522, A028387, A062145.

Sequence in context: A009876 A161958 A013921 * A217748 A009877 A009880

Adjacent sequences:  A028549 A028550 A028551 * A028553 A028554 A028555

KEYWORD

nonn,easy,nice

AUTHOR

Patrick De Geest

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 20:49 EDT 2017. Contains 284137 sequences.