login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028525 Character of extremal vertex operator algebra of rank 15.5. 3
1, 0, 248, 3875, 31124, 181753, 871627, 3623869, 13496501, 46070247, 146447007, 438436131, 1246840863, 3390992753, 8867414995, 22393107641, 54807572758, 130403285724, 302393467628, 684927912490, 1518200420906, 3298704166389, 7035880460575, 14750661826629 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.

LINKS

Table of n, a(n) for n=0..23.

G. Hoehn (gerald(AT)math.ksu.edu), Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Doctoral Dissertation, Univ. Bonn, Jul 15 1995 (pdf, ps).

FORMULA

G.f.: q^(31/24) * (b(q)^31 - 31*b(q)^7) where b(q) = q^(-1/24) * Product_{k>=0} (1+q^(2*k+1)). - Sean A. Irvine, Feb 04 2020

a(n) ~ 31^(1/4) * exp(Pi*sqrt(31*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Feb 05 2020

MATHEMATICA

nmax = 30; CoefficientList[Series[Product[(1 + x^(2*k + 1))^31, {k, 0, nmax}] - 31*x*Product[(1 + x^(2*k + 1))^7, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 05 2020 *)

CROSSREFS

Cf. A007245, A097340, A028523, A028524, A028511, A000521.

Sequence in context: A200426 A109476 A121732 * A135046 A027654 A003916

Adjacent sequences:  A028522 A028523 A028524 * A028526 A028527 A028528

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Feb 04 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 18:56 EDT 2020. Contains 334664 sequences. (Running on oeis4.)