login
A028484
Number of perfect matchings in graph C_{13} X P_{2n}.
4
1, 521, 783511, 1380947751, 2539295042077, 4737855988840963, 8887976555024756736, 16707831453322853779391, 31432720082490305392103161, 59153025307098251197953889723, 111332882561747103126702691033059, 209551070271391563571916783497390709
OFFSET
0,2
REFERENCES
Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.
LINKS
A. M. Karavaev, S. N. Perepechko, Dimer problem on cylinders: recurrences and generating functions, (in Russian), Matematicheskoe Modelirovanie, 2014, V.26, No.11, pp.18-22.
FORMULA
G.f.: see links.
a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{13}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 17 2020
PROG
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(13, 1, I*x/2)))} \\ Seiichi Manyama, Apr 17 2020
CROSSREFS
Sequence in context: A153180 A173656 A015291 * A057699 A033525 A138647
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(10)-a(11) from Alois P. Heinz, Dec 10 2013
STATUS
approved