login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028375 Squares of (odd numbers not divisible by 5). 1
1, 9, 49, 81, 121, 169, 289, 361, 441, 529, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3249, 3481, 3721, 3969, 4489, 4761, 5041, 5329, 5929, 6241, 6561, 6889, 7569, 7921, 8281, 8649, 9409, 9801, 10201, 10609, 11449, 11881, 12321 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Comment from Jonathan Vos Post, Mar 03 2010: Catalan stated empirically that the triple of any odd square not divisible by 5 is a sum of squares of three primes other than 2 and 3. [Reference?]

LINKS

Table of n, a(n) for n=1..45.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).

FORMULA

a(n) = (A045572(n))^2.

a(n) = a(n-1) +2*a(n-4) -2*a(n-5) -a(n-8) +a(n-9). - R. J. Mathar, Sep 22 2009

G.f.: x*(1+8*x+40*x^2+32*x^3+38*x^4+32*x^5+40*x^6+8*x^7+x^8)/ ((1+x)^2 * (x^2+1)^2 * (1-x)^3). - R. J. Mathar, Sep 22 2009

MATHEMATICA

Select[Range[1, 191, 2], Mod[#, 5]!=0&]^2 (* or *) LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 9, 49, 81, 121, 169, 289, 361, 441}, 50] (* Harvey P. Dale, Feb 26 2017 *)

CROSSREFS

Sequence in context: A032589 A137175 * A167744 A032598 A110873 A167716

Adjacent sequences:  A028372 A028373 A028374 * A028376 A028377 A028378

KEYWORD

nonn,easy

AUTHOR

ems (nibor(AT)ix.netcom.com)

EXTENSIONS

Definition corrected - R. J. Mathar, Sep 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 05:36 EST 2017. Contains 295076 sequences.