The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028356 Simple periodic sequence underlying clock sequence A028354. 14
 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Klaus Brockhaus, May 15 2010: (Start) Continued fraction expansion of (28+sqrt(2730))/56. Decimal expansion of 1112/9009. Partial sums of 1 followed by A130151. First differences of A028357. (End) REFERENCES Zdeněk Horský, "Pražský orloj" ("The Astronomical Clock of Prague", in Czech), Panorama, Prague, 1988, pp. 76-78. LINKS Michal Křížek, Alena Šolcová and Lawrence Somer, Construction of Šindel sequences, Comment. Math. Univ. Carolin., 48 (2007), 373-388. N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98). Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1). FORMULA Sum of any six successive terms is 15. G.f.: (1 + 2*x + 3*x^2 + 4*x^3 + 3*x^4 + 2*x^5)/(1 - x^6). a(n) = (1/3)*{[cos(2*n*Pi/3) + 1/2]*[1 + (-1)^n] + 2*[cos(2*(n + 5)*Pi/3) + 1/2]*[1 + (-1)^(n + 5)] + 3*[cos(2*(n + 4)*Pi/3) + 1/2]*[1 + (-1)^(n + 4)] + [4*cos(2*(n + 3)*Pi/3) + 1/2]*[1 + (-1)^(n + 3)] + [3*cos(2*(n + 2)*Pi/3) + 1/2]*[1 + (-1)^(n + 2)] + [2*cos(2*(n + 1)*Pi/3) + 1/2]*[1 + (-1)^(n + 1)]}. - Paolo P. Lava, Oct 09 2006 a(n) = [n mod 6+(n+1) mod 6+(n+2) mod 6]/3. - Paolo P. Lava, Oct 09 2006 From Wesley Ivan Hurt, Jun 23 2016: (Start) a(n) = a(n-1) - a(n-3) + a(n-4) for n>3. a(n) = (15 - cos(n*Pi) - 8*cos(n*Pi/3))/6. (End) E.g.f.: (15*exp(x) - exp(-x) - 8*cos(sqrt(3)*x/2)*(sinh(x/2) + cosh(x/2)))/6. - Ilya Gutkovskiy, Jun 23 2016 MAPLE A028356:=n->[1, 2, 3, 4, 3, 2][(n mod 6)+1]: seq(A028356(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016 MATHEMATICA CoefficientList[ Series[(1 + 2x + 3x^2 + 4x^3 + 3x^4 + 2x^5)/(1 - x^6), {x, 0, 85}], x] LinearRecurrence[{1, 0, -1, 1}, {1, 2, 3, 4}, 120] (* or *) PadRight[{}, 120, {1, 2, 3, 4, 3, 2}] (* Harvey P. Dale, Apr 15 2016 *) PROG (MAGMA) &cat [[1, 2, 3, 4, 3, 2]^^20]; // Klaus Brockhaus, May 15 2010 (Sage) def A():     a, b, c, d = 1, 2, 3, 4     while True:         yield a         a, b, c, d = b, c, d, a + (d - b) A028356 = A(); [next(A028356) for n in range(106)] # Peter Luschny, Jul 26 2014 CROSSREFS Cf. A000034, A028354, A068073, A118382, A118383. Cf. A177924 (decimal expansion of (28+sqrt(2730))/56), A130151 (repeat 1, 1, 1, -1, -1, -1), A028357 (partial sums of A028356). - Klaus Brockhaus, May 15 2010 Sequence in context: A008287 A017859 A171456 * A232244 A260644 A073791 Adjacent sequences:  A028353 A028354 A028355 * A028357 A028358 A028359 KEYWORD nonn,easy AUTHOR EXTENSIONS Additional comments from Robert G. Wilson v, Mar 01 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 18:33 EDT 2020. Contains 334580 sequences. (Running on oeis4.)