login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028245 a(n) = 5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1 (essentially Stirling numbers of second kind). 5
0, 0, 0, 0, 24, 360, 3360, 25200, 166824, 1020600, 5921520, 33105600, 180204024, 961800840, 5058406080, 26308573200, 135666039624, 694994293080, 3542142833040, 17980946172000, 90990301641624 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

For n>=2, a(n) is equal to the number of functions f: {1,2,...,n-1}->{1,2,3,4,5} such that Im(f) contains 4 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Mar 08 2007

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..1431

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120).

FORMULA

a(n) = 24*S(n, 5)=24*A000481(n). - Emeric Deutsch, May 02 2004

G.f.: -24*x^5/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009]

E.g.f.: (Sum_{k=0..5} (-1)^(5-k)*binomial(5,k)*exp(k*x))/5. with a(0) = 0. - Wolfdieter Lang, May 03 2017

MATHEMATICA

24StirlingS2[Range[30], 5] (* Harvey P. Dale, Jun 18 2013 *)

Table[5^(n - 1) - 4*4^(n - 1) + 6*3^(n - 1) - 4*2^(n - 1) + 1, {n, 21}] (* or *)

Rest@ CoefficientList[Series[-24 x^5/((x - 1) (4 x - 1) (3 x - 1) (2 x - 1) (5 x - 1)), {x, 0, 21}], x] (* Michael De Vlieger, Sep 24 2016 *)

CROSSREFS

Cf. A000481, A008277, A163626, A000225, A028243, A028244.

Sequence in context: A293618 A137499 A122813 * A005546 A081144 A126780

Adjacent sequences:  A028242 A028243 A028244 * A028246 A028247 A028248

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Doug McKenzie mckfam4(AT)aol.com

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 17:39 EDT 2017. Contains 293648 sequences.