This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028245 a(n) = 5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1 (essentially Stirling numbers of second kind). 6
 0, 0, 0, 0, 24, 360, 3360, 25200, 166824, 1020600, 5921520, 33105600, 180204024, 961800840, 5058406080, 26308573200, 135666039624, 694994293080, 3542142833040, 17980946172000, 90990301641624 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS For n>=2, a(n) is equal to the number of functions f: {1,2,...,n-1}->{1,2,3,4,5} such that Im(f) contains 4 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Mar 08 2007 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1431 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120). FORMULA a(n) = 24*S(n, 5) = 24*A000481(n). - Emeric Deutsch, May 02 2004 G.f.: -24*x^5/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009 E.g.f.: (Sum_{k=0..5} (-1)^(5-k)*binomial(5,k)*exp(k*x))/5. with a(0) = 0. - Wolfdieter Lang, May 03 2017 MATHEMATICA 24StirlingS2[Range[30], 5] (* Harvey P. Dale, Jun 18 2013 *) Table[5^(n - 1) - 4*4^(n - 1) + 6*3^(n - 1) - 4*2^(n - 1) + 1, {n, 21}] (* or *) Rest@ CoefficientList[Series[-24 x^5/((x - 1) (4 x - 1) (3 x - 1) (2 x - 1) (5 x - 1)), {x, 0, 21}], x] (* Michael De Vlieger, Sep 24 2016 *) PROG (PARI) for(n=1, 30, print1(24*stirling(n, 5, 2), ", ")) \\ G. C. Greubel, Nov 19 2017 (MAGMA) [5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017 CROSSREFS Cf. A000481, A008277, A163626, A000225, A028243, A028244. Sequence in context: A293618 A137499 A122813 * A005546 A081144 A126780 Adjacent sequences:  A028242 A028243 A028244 * A028246 A028247 A028248 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Doug McKenzie mckfam4(AT)aol.com STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.