login
A028223
Expansion of 1/((1-7x)(1-8x)(1-10x)(1-12x)).
1
1, 37, 863, 16241, 269703, 4129041, 59748151, 829986817, 11183795975, 147236359985, 1903757010519, 24269169222753, 305923748441767, 3821741982426769, 47397910610955767, 584393237595955649
OFFSET
0,2
LINKS
FORMULA
G.f.: 1/((1-7*x)*(1-8*x)*(1-10*x)*(1-12*x)).
a(n) = (3*12^(n+3)-10^(n+4)+15*8^(n+3)-8*7^(n+3))/120. [Yahia Kahloune, Jun 12 2013]
a(0)=1, a(1)=37, a(2)=863, a(3)=16241, a(n) = 37*a(n-1)-506*a(n-2)+ 3032*a(n-3)- 6720*a(n-4). - Harvey P. Dale, Apr 08 2014
MATHEMATICA
CoefficientList[Series[1/((1-7x)(1-8x)(1-10x)(1-12x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{37, -506, 3032, -6720}, {1, 37, 863, 16241}, 20] (* Harvey P. Dale, Apr 08 2014 *)
CROSSREFS
Sequence in context: A251105 A144511 A028225 * A028217 A028215 A028198
KEYWORD
nonn
AUTHOR
STATUS
approved