OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..900
Index entries for linear recurrences with constant coefficients, signature (39,-560,3492,-7920).
FORMULA
a(n) = 23*a(n-1) - 132*a(n-2) + 2^(n-1)*(5^(n+1) - 3^(n+1)), n >= 2. - Vincenzo Librandi, Mar 13 2011
a(n) = (5*12^(n+2) - 11^(n+3) + 5^4*10^n - 9*6^n)/5. - R. J. Mathar, Mar 15 2011
E.g.f.: (720*exp(12*x) -1331*exp(11*x) + 625*exp(10*x) -9*exp(6*x))/5. - G. C. Greubel, Oct 28 2019
MAPLE
seq((5*12^(n+2) + 5^4*10^n - 9*6^n - 11^(n+3))/5, n=0..30); # G. C. Greubel, Oct 28 2019
MATHEMATICA
CoefficientList[Series[1/((1 - 6x)(1 - 10x)(1 - 11x)(1 - 12x)) , {x, 0, 29}], x] (* Alonso del Arte, Oct 25 2019 *)
PROG
(PARI) vector(31, n, (5*12^(n+1) +5^4*10^(n-1) -9*6^(n-1) -11^(n+2))/5) \\ G. C. Greubel, Oct 28 2019
(Magma) [(5*12^(n+2) + 5^4*10^n - 9*6^n - 11^(n+3))/5: n in [0..30]]; // G. C. Greubel, Oct 28 2019
(Sage) [(5*12^(n+2) + 5^4*10^n - 9*6^n - 11^(n+3))/5 for n in (0..30)] # G. C. Greubel, Oct 28 2019
(GAP) List([0..30], n-> (5*12^(n+2) + 5^4*10^n - 9*6^n - 11^(n+3))/5); # G. C. Greubel, Oct 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved