%I #14 Aug 31 2018 19:28:45
%S 1,36,817,14952,241213,3582348,50196889,673865424,8755297045,
%T 110878147380,1375697840881,16786476031416,202032169207597,
%U 2403762666000732,28323951022216393,331005811232778528
%N Expansion of 1/((1-6x)(1-9x)(1-10x)(1-11x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (36, -479, 2784, -5940).
%F a(n) = 21*a(n-1) - 110*a(n-2) + 3*9^n - 2*6^n, n >= 2. - _Vincenzo Librandi_, Mar 13 2011
%F a(n) = -25*10^(n+1) + 11^(n+3)/10 - 3*6^(n+1)/5 + 3*9^(n+2)/2. - _R. J. Mathar_, Mar 18 2011
%F a(n) = 36*a(n-1) - 479*a(n-2) + 2784*a(n-3) - 5940*a(n-4); a(0)=1, a(1)=36, a(2)=817, a(3)=14952. - _Harvey P. Dale_, Jan 16 2013
%t LinearRecurrence[{36,-479,2784,-5940},{1,36,817,14952},30] (* _Harvey P. Dale_, Jan 16 2013 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_