login
Expansion of 1/((1-6x)(1-8x)(1-11x)(1-12x)).
0

%I #15 Jul 23 2021 17:34:34

%S 1,37,867,16457,276563,4296369,63218779,894460009,12289771395,

%T 165102658721,2179224895211,28361892985881,364934200067347,

%U 4651876568586193,58839203762144763,739393306409353673

%N Expansion of 1/((1-6x)(1-8x)(1-11x)(1-12x)).

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (37,-502,2952,-6336)

%F a(n) = 23*a(n-1) - 132*a(n-2) + 2^n*(4^(n+1) - 3^(n+1)), n >= 2. - _Vincenzo Librandi_, Mar 14 2011

%F a(n) = 6*12^(n+1) + 8^(n+2)/3 - 11^(n+3)/15 - 3*6^(n+1)/5. - _R. J. Mathar_, Mar 14 2011

%t CoefficientList[Series[1/((1-6x)(1-8x)(1-11x)(1-12x)),{x,0,20}],x] (* or *) LinearRecurrence[{37,-502,2952,-6336},{1,37,867,16457},20] (* _Harvey P. Dale_, Jul 23 2021 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_