login
Expansion of 1/((1-6x)(1-7x)(1-9x)(1-12x)).
0

%I #15 Aug 31 2018 02:55:02

%S 1,34,733,12826,199213,2869258,39283021,519148762,6689833645,

%T 84640449322,1056561931789,13058296545658,160199367141997,

%U 1954490541959626,23747047106341837,287633422522201114

%N Expansion of 1/((1-6x)(1-7x)(1-9x)(1-12x)).

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (34,-423,2286,-4536)

%F a(n) = 21*a(n-1) - 108*a(n-2) + 7^(n+1) - 6^(n+1), n >= 2. - _Vincenzo Librandi_, Mar 13 2011

%F a(n) = 7^(n+3)/10 - 9^(n+2)/2 - 2*6^(n+1) + 8*12^(n+1)/5. - _R. J. Mathar_, Mar 18 2011

%t CoefficientList[Series[1/((1-6x)(1-7x)(1-9x)(1-12x)),{x,0,20}],x] (* or *) LinearRecurrence[{34,-423,2286,-4536},{1,34,733,12826},20] (* _Harvey P. Dale_, Dec 11 2017 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_