login
Expansion of 1/((1-4x)(1-9x)(1-11x)(1-12x)).
0

%I #25 Aug 06 2024 02:02:47

%S 1,36,829,15576,260425,4039212,59479093,843439392,11625297409,

%T 156744987828,2076870835117,27134173366248,350447396932153,

%U 4483154549898684,56894676264296101,717171756670960944

%N Expansion of 1/((1-4x)(1-9x)(1-11x)(1-12x)).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (36,-467,2544,-4752)

%F a(n) = 23*a(n-1) - 132*a(n-2) + (9^(n+1) - 4^(n+1))/5, n >= 2. - _Vincenzo Librandi_, Mar 16 2011

%F a(n) = -11^(n+3)/14 - 2*4^(n+1)/35 + 6*12^(n+1) + 3*9^(n+2)/10. - _R. J. Mathar_, Mar 17 2011

%t CoefficientList[Series[1/((1-4x)(1-9x)(1-11x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{36,-467,2544,-4752},{1,36,829,15576},30] (* _Harvey P. Dale_, Dec 16 2021 *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_