login
A028130
Expansion of 1/((1-4x)(1-6x)(1-7x)(1-8x)).
4
1, 25, 395, 5045, 56931, 592725, 5834515, 55132165, 505157411, 4519668725, 39685517235, 343261312485, 2933027514691, 24811827085525, 208162421081555, 1734382406904005, 14367095262780771, 118431759773683125
OFFSET
0,2
FORMULA
From Vincenzo Librandi, Mar 17 2011: (Start)
a(n) = 25*a(n-1) - 230*a(n-2) + 920*a(n-3) - 1344*a(n-4), n >= 4.
a(n) = 15*a(n-1) - 56*a(n-2) - 2*4^n + 3*6^n, n >= 2. (End)
a(n) = -7^(n+3)/3 - 2*4^(n+1)/3 + 9*6^(n+1) + 8^(n+2). - R. J. Mathar, Mar 18 2011
MATHEMATICA
CoefficientList[Series[1/((1-4x)(1-6x)(1-7x)(1-8x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{25, -230, 920, -1344}, {1, 25, 395, 5045}, 30] (* Harvey P. Dale, Jun 19 2014 *)
PROG
(PARI) Vec(1/((1-4*x)*(1-6*x)*(1-7*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Sequence in context: A125482 A306322 A344733 * A286719 A174515 A028116
KEYWORD
nonn,easy
STATUS
approved