login
Expansion of 1/((1-3x)(1-4x)(1-8x)(1-12x)).
0

%I #12 Jul 30 2015 22:46:56

%S 1,27,481,7203,98665,1285179,16245937,201600531,2472643129,

%T 30100201131,364634299393,4403082925059,53056831273993,

%U 638440928326683,7675363823623249,92216951605023987,1107504122083376857,13297255155917290635,159624707672057279905

%N Expansion of 1/((1-3x)(1-4x)(1-8x)(1-12x)).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (27, -248, 912, -1152).

%F a(0)=1, a(1)=27, a(2)=481, a(3)=7203, a(n) = 27*a(n-1)-248*a(n-2)+912*a(n-3) - 1152*a(n-4). - _Harvey P. Dale_, Feb 08 2013

%F a(n) = (5*12^(n+3)-18*8^(n+3)+45*4^(n+3)-32*3^(n+3))/1440. - _Yahia Kahloune_, Jun 07 2013

%t CoefficientList[Series[1/((1-3x)(1-4x)(1-8x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{27,-248,912,-1152},{1,27,481,7203},30] (* _Harvey P. Dale_, Feb 08 2013 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_.