This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027980 a(n) = Sum_{k=0..n-1} T(n,k)*T(n,2n-k), T given by A027960. 1
 1, 13, 48, 176, 580, 1844, 5667, 17047, 50404, 147090, 424686, 1215528, 3453733, 9752641, 27393240, 76587284, 213260152, 591707612, 1636514439, 4513276555, 12414985996, 34071252918, 93305816418, 255027755856, 695815086025, 1895348847349, 5154987856512, 14000952578552 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-5,-5,5,-1). FORMULA G.f.: (1 +8*x -12*x^2 +6*x^3)/ ((1+x)*(1-3*x+x^2)^2). - Colin Barker, Nov 25 2014 a(n) = (n+1)*Lucas(2*n) - Fibonacci(2*n+1) - (-1)^n. - G. C. Greubel, Oct 01 2019 MAPLE with(combinat); f:=fibonacci; seq((n+1)*(f(2*n+3) + f(2*n+1)) - f(2*n+1) -(-1)^n, n=0..40); # G. C. Greubel, Oct 01 2019 MATHEMATICA Table[(n+1)*LucasL[2*n+2] -Fibonacci[2*n+1] -(-1)^n, {n, 0, 40}] (* G. C. Greubel, Oct 01 2019 *) PROG (PARI) vector(41, n, f=fibonacci; n*(f(2*n+1) + f(2*n-1)) - f(2*n-1) + (-1)^n) \\ G. C. Greubel, Oct 01 2019 (MAGMA) [(n+1)*Lucas(2*n+2) - Fibonacci(2*n+1) -(-1)^n: n in [0..40]]; // G. C. Greubel, Oct 01 2019 (Sage) [(n+1)*lucas_number2(2*n+2, 1, -1) - fibonacci(2*n+1) -(-1)^n for n in (0..40)] # G. C. Greubel, Oct 01 2019 (GAP) List([0..40], n-> (n+1)*Lucas(1, -1, 2*n+2)[2] - Fibonacci(2*n+1) -(-1)^n); # G. C. Greubel, Oct 01 2019 CROSSREFS Cf. A000032, A000045, A027960. Sequence in context: A300337 A135712 A225920 * A200254 A288746 A220707 Adjacent sequences:  A027977 A027978 A027979 * A027981 A027982 A027983 KEYWORD nonn AUTHOR EXTENSIONS Terms a(24) onward added by G. C. Greubel, Oct 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 00:16 EST 2019. Contains 329812 sequences. (Running on oeis4.)