login
Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0.
13

%I #23 Sep 08 2022 08:44:49

%S 1,1,1,1,2,1,1,3,3,1,1,3,7,4,1,1,3,8,14,5,1,1,3,8,20,25,6,1,1,3,8,21,

%T 46,41,7,1,1,3,8,21,54,97,63,8,1,1,3,8,21,55,133,189,92,9,1,1,3,8,21,

%U 55,143,309,344,129,10,1,1,3,8,21,55,144,364,674,591,175,11,1

%N Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0.

%H G. C. Greubel, <a href="/A027948/b027948.txt">Rows n = 0..100 of triangle, flattened</a>

%F T(n,k) = Sum_{j=0..n-k} binomial(n-j, 2*(n-k-j) -1) with T(n,n)=1 in the region n >= 0, 0 <= k <= n. - _G. C. Greubel_, Sep 29 2019

%e Triangle begins with:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 3, 3, 1;

%e 1, 3, 7, 4, 1;

%e 1, 3, 8, 14, 5, 1;

%e 1, 3, 8, 20, 25, 6, 1;

%e 1, 3, 8, 21, 46, 41, 7, 1; ...

%p T:= proc(n, k)

%p if k=n then 1

%p else add(binomial(n-j, 2*(n-k-j)-1), j=0..n-k)

%p fi

%p end:

%p seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Sep 29 2019

%t T[n_, k_]:= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j, 0, n-k}]];

%t Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 29 2019 *)

%o (PARI) T(n,k) = if(k==n, 1, sum(j=0,n-k, binomial(n-j, 2*(n-k-j)-1)) );

%o for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Sep 29 2019

%o (Magma) T:= func< n,k | k eq n select 1 else &+[Binomial(n-j, 2*(n-k-j) -1): j in [0..n-k]] >;

%o [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 29 2019

%o (Sage)

%o def T(n, k):

%o if (k==n): return 1

%o else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k))

%o [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Sep 29 2019

%o (GAP)

%o T:= function(n,k)

%o if k=n then return 1;

%o else return Sum([0..n-k], j-> Binomial(n-j, 2*(n-k-j)-1) );

%o fi;

%o end;

%o Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Sep 29 2019

%Y The row sums of this (slightly extended) bisection of the "Fibonacci array" A027926 are powers of 2, see A027935 for the other bisection.

%K nonn,tabl

%O 0,5

%A _Clark Kimberling_

%E Name edited by _G. C. Greubel_, Sep 29 2019