The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027938 a(n) = T(2n, n+2), T given by A027935. 1
 1, 16, 92, 365, 1204, 3588, 10093, 27476, 73440, 194345, 511576, 1342936, 3520457, 9222440, 24151764, 63238773, 165571628, 433484476, 1134891605, 2971201740, 7778726776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 Index entries for linear recurrences with constant coefficients, signature (7,-19,26,-19,7,-1). FORMULA G.f.: x^2*(1+9*x-x^2-x^3) / ((1-x)^4*(1-3*x+x^2)). - Colin Barker, Dec 10 2015 a(n) = Fibonacci(2*n+5) - (4*n^3 + 6*n^2 + 14*n + 15)/3. - G. C. Greubel, Sep 28 2019 MAPLE with(combinat); seq(fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3, n=2..30); # G. C. Greubel, Sep 28 2019 MATHEMATICA Table[Fibonacci[2*n+5] -(4*n^3 +6*n^2 +14*n +15)/3, {n, 2, 30}] (* G. C. Greubel, Sep 28 2019 *) PROG (PARI) vector(30, n, my(m=n+1); fibonacci(2*m+5) - (4*m^3 +6*m^2 +14*m +15)/3) \\ G. C. Greubel, Sep 28 2019 (MAGMA) [Fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3: n in [2..30]]; // G. C. Greubel, Sep 28 2019 (Sage) [fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3 for n in (2..30)] # G. C. Greubel, Sep 28 2019 (GAP) List([2..30], n-> Fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3 ); # G. C. Greubel, Sep 28 2019 CROSSREFS Cf. A000045, A027935. Sequence in context: A047674 A153029 A170920 * A301527 A185458 A108676 Adjacent sequences:  A027935 A027936 A027937 * A027939 A027940 A027941 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 15:34 EST 2020. Contains 338640 sequences. (Running on oeis4.)