This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027914 T(n,0) + T(n,1) + ... + T(n,n), T given by A027907. 13
 1, 2, 6, 17, 50, 147, 435, 1290, 3834, 11411, 34001, 101400, 302615, 903632, 2699598, 8068257, 24121674, 72137547, 215786649, 645629160, 1932081885, 5782851966, 17311097568, 51828203475, 155188936431, 464732722872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let b(n)=a(n) mod 2; then b(n)=1/2+(-1)^n*(1/2-A010060(floor(n/2))). - Benoit Cloitre, Mar 23 2004 Binomial transform of A027306. Inverse binomial transform of = A032443. Hankel transform is {1, 2, 3, 4, ..., n, ...}. - Philippe Deléham, Jul 20 2005 Sums of rows of the triangle in A111808. - Reinhard Zumkeller, Aug 17 2005 Number of 3-ary words of length n in which the number of 1's does not exceed the number of 0's. - David Scambler, Aug 14 2012 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 FORMULA a(n) = ( 3^n + A002426(n) )/2; lim n -> infinity a(n+1)/a(n) = 3; 3^n < 2*a(n) < 3^(n+1). - Benoit Cloitre, Sep 28 2002 From Benoit Cloitre, Jan 26 2003: (Start) a(n) = (1/2) *(Sum(k=0, n, binomial(n, k)*binomial(n-k, k))+3^n); a(n) = Sum(k=0, n, Sum(i=0, k, binomial(n, i)*binomial(n-i, k))); a(n) = 3^n/2*(1+c/sqrt(n)+O(n^-1/2)) where c=0.5... (End) c = sqrt(3/Pi)/2 = 0.4886025119... - Vaclav Kotesovec, May 07 2016 a(n) = n!*Sum(i+j+k=n, 1/(i!*j!*k!)) 0<=i<=n, 0<=k<=j<=n. - Benoit Cloitre, Mar 23 2004 G.f.: (1+x+sqrt(1-2x-3x^2))/(2(1-2x-3x^2)); a(n)=sum{k=0..n, floor((k+2)/2)*Sum{i=0..floor((n-k)/2), C(n, i)C(n-i, i+k)((k+1)/(i+k+1))}}. - Paul Barry, Sep 23 2005; corrected Jan 20 2008 Conjecture: n*a(n) +(-5*n+4)*a(n-1) +3*(n-2)*a(n-2) +9*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 02 2012 G.f.: (1+x+1/G(0))/(2*(1-2*x-3*x^2)), where G(k)= 1 + x*(2+3*x)*(4*k+1)/(4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013 From Peter Bala, Jul 21 2015: (Start) a(n) = [x^n]( 3*x - 1/(1 - x) )^n. 1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + ... is the o.g.f. for A005773. (End) a(n) = (3^n + GegenbauerC(n,-n,-1/2))/2. - Peter Luschny, May 12 2016 MAPLE a := n -> simplify((3^n + GegenbauerC(n, -n, -1/2))/2): seq(a(n), n=0..25); # Peter Luschny, May 12 2016 MATHEMATICA CoefficientList[ Series[ (1 + x + Sqrt[1 - 2x - 3x^2])/(2 - 4x - 6x^2), {x, 0, 26}], x] (* Robert G. Wilson v, Jul 21 2015 *) Table[(3^n + Hypergeometric2F1[1/2 - n/2, -n/2, 1, 4])/2, {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *) f[n_] := Plus @@ Take[ CoefficientList[ Sum[x^k, {k, 0, 2}]^n, x], n +1]; Array[f, 26, 0] (* Robert G. Wilson v, Jan 30 2017 *) PROG (PARI) a(n)=sum(i=0, n, polcoeff((1+x+x^2)^n, i, x)) (PARI) a(n)=sum(i=0, n, sum(j=0, n, sum(k=0, j, if(i+j+k-n, 0, (n!/i!/j!/k!))))) (PARI) x='x+O('x^99); Vec((1+x+(1-2*x-3*x^2)^(1/2))/(2*(1-2*x-3*x^2))) \\ Altug Alkan, May 12 2016 (Haskell) a027914 n = sum \$ take (n + 1) \$ a027907_row n -- Reinhard Zumkeller, Jan 22 2013 CROSSREFS Cf. A025191, A027915, A081673, A092255, A055217, A005773. Sequence in context: A244407 A173993 A270863 * A098703 A025272 A148447 Adjacent sequences:  A027911 A027912 A027913 * A027915 A027916 A027917 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 04:43 EST 2019. Contains 319323 sequences. (Running on oeis4.)