login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027914 T(n,0) + T(n,1) + ... + T(n,n), T given by A027907. 13
1, 2, 6, 17, 50, 147, 435, 1290, 3834, 11411, 34001, 101400, 302615, 903632, 2699598, 8068257, 24121674, 72137547, 215786649, 645629160, 1932081885, 5782851966, 17311097568, 51828203475, 155188936431, 464732722872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let b(n)=a(n) mod 2; then b(n)=1/2+(-1)^n*(1/2-A010060(floor(n/2))). - Benoit Cloitre, Mar 23 2004

Binomial transform of A027306. Inverse binomial transform of = A032443. Hankel transform is {1, 2, 3, 4, ..., n, ...}. - Philippe Deléham, Jul 20 2005

Sums of rows of the triangle in A111808. - Reinhard Zumkeller, Aug 17 2005

Number of 3-ary words of length n in which the number of 1's does not exceed the number of 0's. - David Scambler, Aug 14 2012

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = ( 3^n + A002426(n) )/2; lim n -> infinity a(n+1)/a(n) = 3; 3^n < 2*a(n) < 3^(n+1). - Benoit Cloitre, Sep 28 2002

From Benoit Cloitre, Jan 26 2003: (Start)

a(n) = (1/2) *(Sum(k=0, n, binomial(n, k)*binomial(n-k, k))+3^n);

a(n) = Sum(k=0, n, Sum(i=0, k, binomial(n, i)*binomial(n-i, k)));

a(n) = 3^n/2*(1+c/sqrt(n)+O(n^-1/2)) where c=0.5... (End)

c = sqrt(3/Pi)/2 = 0.4886025119... - Vaclav Kotesovec, May 07 2016

a(n) = n!*Sum(i+j+k=n, 1/(i!*j!*k!)) 0<=i<=n, 0<=k<=j<=n. - Benoit Cloitre, Mar 23 2004

G.f.: (1+x+sqrt(1-2x-3x^2))/(2(1-2x-3x^2)); a(n)=sum{k=0..n, floor((k+2)/2)*Sum{i=0..floor((n-k)/2), C(n, i)C(n-i, i+k)((k+1)/(i+k+1))}}. - Paul Barry, Sep 23 2005; corrected Jan 20 2008

Conjecture: n*a(n) +(-5*n+4)*a(n-1) +3*(n-2)*a(n-2) +9*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 02 2012

G.f.: (1+x+1/G(0))/(2*(1-2*x-3*x^2)), where G(k)= 1 + x*(2+3*x)*(4*k+1)/(4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013

From Peter Bala, Jul 21 2015: (Start)

a(n) = [x^n]( 3*x - 1/(1 - x) )^n.

1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + ... is the o.g.f. for A005773. (End)

a(n) = (3^n + GegenbauerC(n,-n,-1/2))/2. - Peter Luschny, May 12 2016

MAPLE

a := n -> simplify((3^n + GegenbauerC(n, -n, -1/2))/2):

seq(a(n), n=0..25); # Peter Luschny, May 12 2016

MATHEMATICA

CoefficientList[ Series[ (1 + x + Sqrt[1 - 2x - 3x^2])/(2 - 4x - 6x^2), {x, 0, 26}], x] (* Robert G. Wilson v, Jul 21 2015 *)

Table[(3^n + Hypergeometric2F1[1/2 - n/2, -n/2, 1, 4])/2, {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *)

f[n_] := Plus @@ Take[ CoefficientList[ Sum[x^k, {k, 0, 2}]^n, x], n +1]; Array[f, 26, 0] (* Robert G. Wilson v, Jan 30 2017 *)

PROG

(PARI) a(n)=sum(i=0, n, polcoeff((1+x+x^2)^n, i, x))

(PARI) a(n)=sum(i=0, n, sum(j=0, n, sum(k=0, j, if(i+j+k-n, 0, (n!/i!/j!/k!)))))

(PARI) x='x+O('x^99); Vec((1+x+(1-2*x-3*x^2)^(1/2))/(2*(1-2*x-3*x^2))) \\ Altug Alkan, May 12 2016

(Haskell)

a027914 n = sum $ take (n + 1) $ a027907_row n

-- Reinhard Zumkeller, Jan 22 2013

CROSSREFS

Cf. A025191, A027915, A081673, A092255, A055217, A005773.

Sequence in context: A244407 A173993 A270863 * A098703 A025272 A148447

Adjacent sequences:  A027911 A027912 A027913 * A027915 A027916 A027917

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 23:47 EST 2018. Contains 299297 sequences. (Running on oeis4.)