login
T(n,[ n/2 ]), T given by A027907.
3

%I #25 Nov 22 2020 01:24:05

%S 1,1,2,3,10,15,50,77,266,414,1452,2277,8074,12727,45474,71955,258570,

%T 410346,1481108,2355962,8533660,13599915,49402850,78855339,287134346,

%U 458917850,1674425300,2679183405,9792273690,15683407785

%N T(n,[ n/2 ]), T given by A027907.

%C The median coefficient in the expansion of (1 + x + x^2)^n. - _Vladimir Reshetnikov_, Nov 21 2020

%H Robert Israel, <a href="/A027913/b027913.txt">Table of n, a(n) for n = 0..2550</a>

%F a(n) = GegenbauerC(floor(n/2), -n, -1/2). - _Emanuele Munarini_, Oct 18 2016

%F G.f.: g(t) = (1+(t+t^2)*A(t^2)+t^4*A(t^2)^2)/(1-t^2*A(t^2)-3*t^4*A(t^2)^2), where A(t) is the g.f. of A143927 and satisfies A(t) = [1 + x*A(t) + t^2*A(t)^2]^2. - _Emanuele Munarini_, Oct 20 2016

%p seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # _Robert Israel_, Oct 20 2016

%t Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,

%t 100}] (* _Emanuele Munarini_, Oct 20 2016 *)

%o (Maxima) makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* _Emanuele Munarini_, Oct 18 2016 */

%Y Cf. A027907, A027908.

%K nonn

%O 0,3

%A _Clark Kimberling_