The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027711 Number of binary sequences of length n with an even number of ones, at least two of the ones being contiguous. 1
 0, 1, 2, 4, 9, 21, 47, 101, 212, 440, 907, 1859, 3791, 7699, 15586, 31476, 63445, 127689, 256671, 515433, 1034248, 2073968, 4156791, 8327911, 16679007, 33395527, 66851750, 133801708, 267762321, 535781757, 1071979535 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-5,2,1,-2). FORMULA G.f.: x^2*(1 - 2*x + x^2 + x^3)/((2*x-1)*(x^2 + x - 1)*(x^2 - x + 1)). a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + a(n-4) - 2*a(n-5). MATHEMATICA LinearRecurrence[{4, -5, 2, 1, -2}, {0, 1, 2, 4, 9}, 40] (* Vincenzo Librandi, Jun 20 2012 CoefficientList[Series[x^2*(1-2*x+x^2+x^3)/((2*x-1)*(x^2+x-1)*(x^2-x+1)), {x, 0, 50}], x] (* G. C. Greubel, Jun 10 2017 *) PROG (MAGMA) I:=[0, 1, 2, 4, 9]; [n le 5 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3)+Self(n-4)-2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jun 20 2012 (PARI) x='x+O('x^50); Vec(x^2*(1-2*x+x^2+x^3)/((2*x-1)*(x^2+x-1)*(x^2-x+1))) \\ G. C. Greubel, Jun 10 207 CROSSREFS Sequence in context: A093698 A091619 A061439 * A307548 A084634 A137256 Adjacent sequences:  A027708 A027709 A027710 * A027712 A027713 A027714 KEYWORD nonn,easy AUTHOR EXTENSIONS Typo in denominator of g.f. corrected by R. J. Mathar, Sep 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 17:37 EDT 2020. Contains 338067 sequences. (Running on oeis4.)