

A027699


Evil primes: primes with even number of 1's in their binary expansion.


24



3, 5, 17, 23, 29, 43, 53, 71, 83, 89, 101, 113, 139, 149, 163, 197, 257, 263, 269, 277, 281, 293, 311, 317, 337, 347, 349, 353, 359, 373, 383, 389, 401, 449, 461, 467, 479, 503, 509, 523, 547, 571, 593, 599, 619, 643, 673, 683, 691, 739, 751, 773, 797, 811
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Comment from Vladimir Shevelev, Jun 01 2007: Conjecture: If pi_1(m) is the number of a(n) not exceeding m and pi_2(m) is the number of A027697(n) not exceeding m then pi_1(m) <= smaller than pi_2(m) for all natural m except m=5 and m=6. I verified this conjecture up to 10^9. Moreover I conjecture that pi_2(m)pi_1(m) tends to infinity with records at the primes m=2, 13, 41, 61, 67, 79, 109, 131, 137, ...


REFERENCES

Fouvry, E.; Mauduit, C. Sommes des chiffres et nombres presque premiers. (French) [Sums of digits and almost primes] Math. Ann. 305 (1996), no. 3, 571599. MR1397437 (97k:11029)


LINKS

T. D. Noe, Table of n, a(n) for n=1..10000
V. Shevelev, A conjecture on primes and a step towards justification


MATHEMATICA

Select[Prime[Range[200]], EvenQ[Count[IntegerDigits[ #, 2], 1]]&]  T. D. Noe, Jun 12 2007


PROG

(PARI) forprime(p=1, 999, norml2(binary(p))%2print1(p", "))
(PARI) isA027699(p)=isprime(p)&!bittest(norml2(binary(p)), 0) \\ M. F. Hasler, Dec 12 2010


CROSSREFS

Cf. A027697, A066148, A066149.
Cf. A001969 (evil numbers), A129771 (evil odd numbers)
Cf. A130911 (prime race between evil primes and odious primes).
Sequence in context: A218624 A152078 A152079 * A153417 A069687 A079017
Adjacent sequences: A027696 A027697 A027698 * A027700 A027701 A027702


KEYWORD

nonn,easy,base


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Erich Friedman.


STATUS

approved



