%I #23 Mar 11 2024 03:41:46
%S 4,484,28224,228484,8282884,44484284288828484,
%T 244848282488224248488284224,2284884224228428242888448884484,
%U 42884424422284228884248482424484,448424228448248888288442822222282244,424242448424484484244824228422488282244
%N Squares composed of digits {2,4,8}.
%D Ilan Vardi, Computational Recreations in Mathematica, Chapter 2, Exercise 2.2.
%H Zhao Hui Du, <a href="/A027678/b027678.txt">Table of n, a(n) for n = 1..15</a>
%H Patrick De Geest, <a href="http://www.worldofnumbers.com/threedigits.htm">Squares containing at most three distinct digits, Index entries for related sequences</a>.
%H Patrick De Geest, <a href="http://www.worldofnumbers.com/square.htm">Palindromic Squares</a>.
%H H. Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math02/math0210.htm#248">Sporadic tridigital solutions</a>.
%H A. Ottens, <a href="http://einstein.et.tudelft.nl/~arlet/puzzles/sol.cgi/arithmetic/digits/squares/three.digits">The arithmetic-digits-squares-three.digits problem</a>.
%H T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/SEQUENCES/series002">What square consists entirely of three digits(e.g. 2,4 and 8)?</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquareNumber.html">Square Number</a>.
%F a(n) = A027679(n)^2.
%Y Cf. A027679.
%K nonn,base
%O 1,1
%A _Patrick De Geest_
%E One more term from _Jon E. Schoenfield_, Sep 04 2006
%E More terms from Mishima's page added by _Max Alekseyev_, Jan 28 2012