This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027641 Numerator of Bernoulli number B_n. 183

%I

%S 1,-1,1,0,-1,0,1,0,-1,0,5,0,-691,0,7,0,-3617,0,43867,0,-174611,0,

%T 854513,0,-236364091,0,8553103,0,-23749461029,0,8615841276005,0,

%U -7709321041217,0,2577687858367,0,-26315271553053477373,0,2929993913841559,0,-261082718496449122051

%N Numerator of Bernoulli number B_n.

%C a(n)/A027642(n) (Bernoulli numbers) provide the a-sequence for the Sheffer matrix A094816 (coefficients of orthogonal Poisson-Charlier polynomials). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The corresponding z-sequence is given by the rationals A130189(n)/A130190(n).

%C Harvey (2008) describes a new algorithm for computing Bernoulli numbers. His method is to compute B(k) modulo p for many small primes p and then reconstruct B(k) via the Chinese Remainder Theorem. The time complexity is O(k^2 log(k)^(2+eps)). The algorithm is especially well-suited to parallelisation. - _Jonathan Vos Post_, Jul 09 2008

%C Regard the Bernoulli numbers as forming a vector = B_n, and the variant starting (1, 1/2, 1/6, 0, -1/30, ...), (i.e., the first 1/2 has sign +) as forming a vector Bv_n. The relationship between the Pascal triangle matrix, B_n, and Bv_n is as follows: The binomial transform of B_n = Bv_n. B_n is unchanged when multiplied by the Pascal matrix with rows signed (+-+-, ...), i.e., (1; -1,-1; 1,2,1; ...). Bv_n is unchanged when multiplied by the Pascal matrix with columns signed (+-+-, ...), i.e., (1; 1,-1; 1,-2,1; 1,-3,3,-1; ...). - _Gary W. Adamson_, Jun 29 2012

%C The sequence of the Bernoulli numbers B_n = a(n)/A027642(n) is the inverse binomial transform of the sequence {A164555(n)/A027642(n)}, illustrated by the fact that they appear as top row and left column in A190339. - _Paul Curtz_, May 13 2016

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.

%D H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.

%D H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974; see p. 11.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.1.

%D H. H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.6.

%D L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.

%D H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

%H T. D. Noe, <a href="/A027641/b027641.txt">Table of n, a(n) for n = 0..200</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H C. M. Bender and K. A. Milton, <a href="http://arxiv.org/abs/hep-th/9304052">Continued fraction as a discrete nonlinear transform</a>, arXiv:hep-th/9304052, 1993.

%H Beáta Bényi, Péter Hajnal, <a href="https://arxiv.org/abs/1804.01868">Poly-Bernoulli Numbers and Eulerian Numbers</a>, arXiv:1804.01868 [math.CO], 2018.

%H H. Bergmann, <a href="http://dx.doi.org/10.1002/mana.1967.3210340509">Eine explizite Darstellung der Bernoullischen Zahlen</a>, Math. Nach. 34 (1967), 377-378. Math Rev 36#4030.

%H Richard P. Brent and David Harvey, <a href="http://arxiv.org/abs/1108.0286">Fast computation of Bernoulli, Tangent and Secant numbers</a>, arXiv preprint arXiv:1108.0286 [math.CO], 2011.

%H K.-W. Chen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/CHEN/AlgBE2.html">Algorithms for Bernoulli numbers and Euler numbers</a>, J. Integer Sequences, 4 (2001), #01.1.6.

%H W. Y.C. Chen, J. J. F. Guo and L. X. W. Wang, <a href="http://arxiv.org/abs/1208.5213">Log-behavior of the Bernoulli Numbers</a>, arXiv:1208.5213 [math.CO], 2012-2013.

%H K. Dilcher, <a href="http://www.mscs.dal.ca/%7Edilcher/bernoulli.html">A Bibliography of Bernoulli Numbers (Alphabetically Indexed Authorwise)</a>

%H Ghislain R. Franssens, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Franssens/franssens13.html">On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.

%H H. W. Gould, J. Quaintance, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Quaintance/quain3.html">Bernoulli Numbers and a New Binomial Transform Identity</a>, J. Int. Seq. 17 (2014) # 14.2.2

%H M.-P. Grosset and A. P. Veselov, <a href="http://arXiv.org/abs/math.GM/0503175">Bernoulli numbers and solitons</a>, arXiv:math/0503175 [math.GM], 2005.

%H David Harvey, <a href="http://arxiv.org/abs/0807.1347">A multimodular algorithm for computing Bernoulli numbers</a>, arXiv:0807.1347 [math.NT], Jul 08 2008.

%H A. Iványi, <a href="http://www.emis.de/journals/AUSM/C5-1/math51-5.pdf">Leader election in synchronous networks</a>, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.

%H M. Kaneko, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/KANEKO/AT-kaneko.html">The Akiyama-Tanigawa algorithm for Bernoulli numbers</a>, J. Integer Sequences, 3 (2000), #00.2.9.

%H Wolfdieter Lang, <a href="https://arxiv.org/abs/1707.04451">On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers</a>, arXiv:1707.04451 [math.NT], 2017.

%H Guo-Dong Liu, H. M. Srivastava, Hai-Quing Wang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Srivastava/sriva3.html">Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers</a>, J. Int. Seq. 17 (2014) # 14.4.6

%H F. Luca and P. Stanica, <a href="http://calhoun.nps.edu/bitstream/handle/10945/29605/LucaStanicaJCNTfinal.pdf?sequence=1">On some conjectures on the monotonicity of some arithmetical sequences</a>, J. Combin. Number Theory 4 (2012) 1-10.

%H Peter Luschny, <a href="http://luschny.de/math/zeta/The-Bernoulli-Manifesto.html">The Bernoulli Manifesto. A survey on the occasion of the 300th anniversary of the publication of Jacob Bernoulli's Ars Conjectandi, 1713-2013.</a>

%H R. Mestrovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mestrovic/mes4.html">On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers</a>, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha134.htm">Factorizations of many number sequences</a>

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha1341.htm">Factorizations of many number sequences</a>

%H A. F. Neto, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Neto/neto7.html">Carlitz's Identity for the Bernoulli Numbers and Zeon Algebra</a>, J. Int. Seq. 18 (2015) # 15.5.6.

%H Niels Nielsen, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k62119c">Traite Elementaire des Nombres de Bernoulli</a>, Gauthier-Villars, 1923, pp. 398.

%H Simon Plouffe, <a href="http://www.ibiblio.org/gutenberg/etext01/brnll10.txt">The First 498 Bernoulli numbers</a> [Project Gutenberg Etext]

%H E. Sandifer, How Euler Did It, <a href="https://www.maa.org/sites/default/files/pdf/editorial/euler/How%20Euler%20Did%20It%2023%20Bernoulli%20numbers.pdf">Bernoulli numbers</a>

%H J. Singh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Singh/singh8.html">On an Arithmetic Convolution</a>, J. Int. Seq. 17 (2014) # 14.6.7.

%H J. Sondow and E. Tsukerman, <a href="https://arxiv.org/abs/1401.0322">The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers</a>, arXiv:1401.0322 [math.NT], 2014; see section 5.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BernoulliNumber.html">Bernoulli Number.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a>

%H Roman Witula, Damian Slota and Edyta Hetmaniok, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from255to263.pdf">Bridges between different known integer sequences</a>, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.

%H Wolfram Research, <a href="http://functions.wolfram.com/IntegerFunctions/BernoulliB/11">Generating functions of B_n & B_2n</a>

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%F E.g.f: x/(exp(x) - 1); take numerators.

%F Recurrence: B^n = (1+B)^n, n >= 2 (interpreting B^j as B_j).

%F B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k>=1} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/(2*Pi)^(2*n).

%F Sum_{i=1..n-1} i^k = ((n+B)^(k+1)-B^(k+1))/(k+1) (interpreting B^j as B_j).

%F B_{n-1} = - Sum_{r=1..n} (-1)^r binomial(n, r) r^(-1) Sum_{k=1..r} k^(n-1). More concisely, B_n = 1 - (1-C)^(n+1), where C^r is replaced by the arithmetic mean of the first r n-th powers of natural numbers in the expansion of the right-hand side. [Bergmann]

%F Sum_{i>=1} 1/i^(2k) = zeta(2k) = (2*Pi)^(2k)*|B_{2k}|/(2*(2k)!).

%F B_{2n} = (-1)^(m-1)/2^(2m+1) * Integral{-inf..inf, [d^(m-1)/dx^(m-1) sech(x)^2 ]^2 dx} (see Grosset/Veselov).

%F Let B(s,z) = -2^(1-s)(i/Pi)^s s! PolyLog(s,exp(-2*i*Pi/z)). Then B(2n,1) = B_{2n} for n >= 1. Similarly the numbers B(2n+1,1), which might be called Co-Bernoulli numbers, can be considered, and it is remarkable that Leonhard Euler in 1755 already calculated B(3,1) and B(5,1) (Opera Omnia, Ser. 1, Vol. 10, p. 351). (Cf. the Luschny reference for a discussion.) - _Peter Luschny_, May 02 2009

%F The B_n sequence is the left column of the inverse of triangle A074909, the "beheaded" Pascal's triangle. - _Gary W. Adamson_, Mar 05 2012

%F From _Sergei N. Gladkovskii_, Dec 04 2012: (Start)

%F E.g.f. E(x)= 2 - x/(tan(x) + sec(x) - 1)= Sum_{n>=0} a(n)*x^n/n!, a(n)=|B(n)|, where B(n) is Bernoulli number B_n.

%F E(x)= 2 + x - B(0), where B(k)= 4*k+1 + x/(2 + x/(4*k+3 - x/(2 - x/B(k+1)))); (continued fraction, 4-step). (End)

%F E.g.f.: x/(exp(x)-1)= U(0); U(k)= 2*k+1 - x(2*k+1)/(x + (2*k+2)/(1 + x/U(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Dec 05 2012

%F E.g.f.: 2*(x-1)/(x*Q(0)-2) where Q(k) = 1 + 2*x*(k+1)/((2*k+1)*(2*k+3) - x*(2*k+1)*(2*k+3)^2/(x*(2*k+3) + 4*(k+1)*(k+2)/Q(k+1))); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Feb 26 2013

%F a(n) = numerator(B(n)), B(n) = (-1)^n*Sum_{k=0..n} Stirling1(n,k) * Stirling2(n+k,n) / binomial(n+k,k). - _Vladimir Kruchinin_, Mar 16 2013

%F E.g.f.: x/(exp(x)-1) = E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Mar 16 2013

%F G.f. for Bernoulli(n) = a(n)/A027642(n): psi_1(1/x)/x - x, where psi_n(z) is the polygamma function, psi_n(z) = (d/dz)^(n+1) log(Gamma(z)). - _Vladimir Reshetnikov_, Apr 24 2013

%F E.g.f.: 2*E(0) - 2*x, where E(k)= x + (k+1)/(1 + 1/(1 - x/E(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 10 2013

%F B_n = Sum_{m=0..n} (-1)^m *A131689(n, m)/(m + 1), n >= 0. See one of the Maple programs. - _Wolfdieter Lang_, May 05 2017

%F a(n) = numerator((-1)^n*A155585(n-1)*n/(4^n-2^n)), for n>=1. - _Mats Granvik_, Nov 26 2017

%e B_n sequence begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ...

%p B := n -> add((-1)^m*m!*Stirling2(n, m)/(m+1), m=0..n);

%p B := n -> bernoulli(n);

%p seq(numer(bernoulli(n)), n=0..40); # _Zerinvary Lajos_, Apr 08 2009

%t Table[ Numerator[ BernoulliB[ n]], {n, 0, 40}] (* _Robert G. Wilson v_, Oct 11 2004 *)

%t Numerator[ Range[0, 40]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 40}], x]]

%t Numerator[CoefficientList[Series[PolyGamma[1, 1/x]/x - x, {x, 0, 40}, Assumptions -> x > 0], x]] (* _Vladimir Reshetnikov_, Apr 24 2013 *)

%o (PARI) a(n)=if(n<0, 0, numerator(bernfrac(n)))

%o (Maxima) B(n):=(-1)^((n))*sum((stirling1(n,k)*stirling2(n+k,n))/binomial(n+k,k),k,0,n);

%o makelist(num(B(n),n,0,20); \\ _Vladimir Kruchinin_, Mar 16 2013

%o (MAGMA) [Numerator(Bernoulli(n)): n in [0..40]]; // _Vincenzo Librandi_, Mar 17 2014

%o (Sage)

%o print [bernoulli(n).numerator() for n in (0..40)] # _Peter Luschny_, Feb 19 2016

%o (Sage) # Alternatively:

%o def A027641_list(len):

%o f, R, C = 1, [1], [1]+[0]*(len-1)

%o for n in (1..len-1):

%o f *= n

%o for k in range(n, 0, -1):

%o C[k] = C[k-1] / (k+1)

%o C[0] = -sum(C[k] for k in (1..n))

%o R.append((C[0]*f).numerator())

%o return R

%o print A027641_list(41) # _Peter Luschny_, Feb 20 2016

%o (Python)

%o from sympy import bernoulli

%o from fractions import Fraction

%o print[Fraction(str(bernoulli(i))).numerator for i in xrange(0, 51)] # _Indranil Ghosh_, Mar 18 2017

%Y This is the main entry for the Bernoulli numbers and has all the references, links and formulas. Sequences A027642 (the denominators of B_n) and A000367/A002445 = B_{2n} are also important!

%Y Cf. A000146, A002882, A003245, A127187, A127188, A074909, A164555, A176327, A190339, A131689.

%K sign,frac,nice,core

%O 0,11

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 11:51 EDT 2018. Contains 313832 sequences. (Running on oeis4.)