|
|
A027635
|
|
Expansion of (1-x^8)*(1+x^5)/(1-x^2)^5.
|
|
1
|
|
|
1, 0, 5, 0, 15, 1, 35, 5, 69, 15, 121, 35, 195, 69, 295, 121, 425, 195, 589, 295, 791, 425, 1035, 589, 1325, 791, 1665, 1035, 2059, 1325, 2511, 1665, 3025, 2059, 3605, 2511, 4255, 3025, 4979, 3605, 5781, 4255, 6665, 4979, 7635, 5781, 8695, 6665, 9849, 7635, 11101, 8695, 12455, 9849, 13915
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
B. Runge, On Siegel modular forms II, Nagoya Math. J., 138 (1995), 179-197.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
|
|
FORMULA
|
a(n) = (24*(-4+5*(-1)^n)+(73-45*(-1)^n)*n+3*(-3+5*(-1)^n)*n^2+2*n^3)/24. G.f.: (x^2+1)*(x^4-x^3+x^2-x+1)*(x^4+1) / ((x-1)^4*(x+1)^3). - Colin Barker, Aug 06 2013
|
|
MATHEMATICA
|
CoefficientList[Series[(1-x^8)(1+x^5)/(1-x^2)^5, {x, 0, 60}], x] (* or *) Join[{1, 0, 5, 0}, LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {15, 1, 35, 5, 69, 15, 121}, 60]] (* Harvey P. Dale, Sep 21 2013 *)
|
|
PROG
|
(PARI) x='x+O('x^66); Vec((1-x^8)*(1+x^5)/(1-x^2)^5) \\ Joerg Arndt, Aug 06 2013
(MAGMA) [1, 0, 5, 0] cat [(24*(-4+5*(-1)^n)+(73-45*(-1)^n)*n+3*(-3+5*(-1)^n)*n^2+2*n^3)/24: n in [4..60]]; // Vincenzo Librandi, Oct 18 2013
|
|
CROSSREFS
|
Sequence in context: A024418 A167297 A290867 * A291218 A321416 A226372
Adjacent sequences: A027632 A027633 A027634 * A027636 A027637 A027638
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
More terms from Colin Barker, Aug 06 2013
|
|
STATUS
|
approved
|
|
|
|