login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027618 c(i,j) is cost of evaluation of edit distance of two strings with lengths i and j, when you use recursion (every call has a unit cost, other computations are free); sequence gives c(n,n). 4
1, 4, 19, 94, 481, 2524, 13483, 72958, 398593, 2193844, 12146179, 67570078, 377393953, 2114900428, 11885772379, 66963572734, 378082854913, 2138752086628, 12118975586803, 68774144872414, 390815720696161, 2223564321341884 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Found by 7 students: Dufour, Hermon, Lesueur, Moynot, Schabanel, Sers and Wolf.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

c(n, n) where c(i, 0)=c(0, j)=1 and c(i+1, j+1)=1+c(i+1, j)+c(i, j+1)+c(i, j) (c(i, j) is A047671).

G.f.: (3/sqrt(1-6*x+x^2)-1/(1-x))/2.

Recurrence: n*(2*n-3)*a(n) = (2*n-1)*(7*n-10)*a(n-1) - (2*n-3)*(7*n-4)*a(n-2) + (n-2)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 08 2012

a(n) ~ 3*sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012

MATHEMATICA

Table[SeriesCoefficient[(3/Sqrt[1-6*x+x^2]-1/(1-x))/2, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)

PROG

(PARI) x='x+O('x^66); Vec((3/sqrt(1-6*x+x^2)-1/(1-x))/2) \\ Joerg Arndt, May 04 2013

CROSSREFS

Delannoy numbers A008288, A001850 are given by c'(i, j)=(3c(i, j)-1)/2.

Sequence in context: A005978 A083065 A137636 * A020060 A122394 A047781

Adjacent sequences:  A027615 A027616 A027617 * A027619 A027620 A027621

KEYWORD

nonn,easy,nice

AUTHOR

Bruno Petazzoni (Bruno.Petazzoni(AT)ac-idf.jussieu.fr)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 04:47 EST 2014. Contains 250155 sequences.