login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027618 c(i,j) is cost of evaluation of edit distance of two strings with lengths i and j, when you use recursion (every call has a unit cost, other computations are free); sequence gives c(n,n). 4
1, 4, 19, 94, 481, 2524, 13483, 72958, 398593, 2193844, 12146179, 67570078, 377393953, 2114900428, 11885772379, 66963572734, 378082854913, 2138752086628, 12118975586803, 68774144872414, 390815720696161, 2223564321341884 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Found by 7 students: Dufour, Hermon, Lesueur, Moynot, Schabanel, Sers and Wolf.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

c(n, n) where c(i, 0)=c(0, j)=1 and c(i+1, j+1)=1+c(i+1, j)+c(i, j+1)+c(i, j) (c(i, j) is A047671).

G.f.: (3/sqrt(1-6*x+x^2)-1/(1-x))/2.

Recurrence: n*(2*n-3)*a(n) = (2*n-1)*(7*n-10)*a(n-1) - (2*n-3)*(7*n-4)*a(n-2) + (n-2)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 08 2012

a(n) ~ 3*sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012

MATHEMATICA

Table[SeriesCoefficient[(3/Sqrt[1-6*x+x^2]-1/(1-x))/2, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)

PROG

(PARI) x='x+O('x^66); Vec((3/sqrt(1-6*x+x^2)-1/(1-x))/2) \\ Joerg Arndt, May 04 2013

CROSSREFS

Delannoy numbers A008288, A001850 are given by c'(i, j)=(3c(i, j)-1)/2.

Sequence in context: A005978 A083065 A137636 * A020060 A122394 A047781

Adjacent sequences:  A027615 A027616 A027617 * A027619 A027620 A027621

KEYWORD

nonn,easy,nice

AUTHOR

Bruno Petazzoni (Bruno.Petazzoni(AT)ac-idf.jussieu.fr)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 05:11 EST 2016. Contains 278748 sequences.