login
A027604
a(n) = n^3 + (n+1)^3 + (n+2)^3 + (n+3)^3 + (n+4)^3.
6
100, 225, 440, 775, 1260, 1925, 2800, 3915, 5300, 6985, 9000, 11375, 14140, 17325, 20960, 25075, 29700, 34865, 40600, 46935, 53900, 61525, 69840, 78875, 88660, 99225, 110600, 122815, 135900, 149885, 164800, 180675, 197540
OFFSET
0,1
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 1*a(n-4) for n >= 4.
From Bruno Berselli, Jan 24 2011: (Start)
G.f.: 5*(20 - 35*x + 28*x^2 - 7*x^3)/(1-x)^4.
a(n) = 5*n^3 + 30*n^2 + 90*n + 100 = A008587(n+2)*A114949(n+2). (End)
E.g.f.: 5*(4+x)*(5+5*x+x^2)*exp(x). - G. C. Greubel, Aug 24 2022
MATHEMATICA
Table[n^3 +(n+1)^3 +(n+2)^3 +(n+3)^3 +(n+4)^3, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
Table[100+90n+30n^2+5n^3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {100, 225, 440, 775}, 40] (* Harvey P. Dale, Dec 19 2022 *)
PROG
(Sage) [n^3+(n+1)^3+(n+2)^3+(n+3)^3+(n+4)^3 for n in range(0, 35)] # Zerinvary Lajos, Jul 03 2008
(Magma) [5*n^3+30*n^2+90*n+100: n in [0..40]]; // Vincenzo Librandi, Jun 04 2011
(PARI) a(n)=5*((n+6)*n+18)*n+100 \\ Charles R Greathouse IV, Jun 28 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved