%I #15 Nov 11 2019 00:04:36
%S 1,2,3,4,6,9,11,15,19,24,30,39,46,57,69,82,99,119,138,163,190,221,256,
%T 298,339,389,445,505,575,653,733,827,929,1042,1166,1306,1450,1614,
%U 1795,1988,2203,2438,2683,2960,3257,3580,3929,4312,4712,5155,5635,6145,6701
%N Sequence satisfies T^2(a)=a, where T is defined below.
%D S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a027/A027594.java">Java program</a> (github)
%F Define T:a->b by: given a1 <= a2 <= ..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 5 do not occur more than once.
%F A027594 = T(A027593). - _Sean A. Irvine_, Nov 10 2019
%K nonn,eigen
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Sean A. Irvine_, Nov 09 2019