

A027591


Sequence satisfies T^2(a)=a, where T is defined below.


1



1, 2, 2, 4, 4, 7, 8, 12, 13, 18, 21, 28, 32, 41, 47, 59, 67, 84, 95, 116, 130, 158, 177, 211, 237, 279, 312, 364, 408, 471, 525, 603, 671, 766, 849, 966, 1067, 1206, 1330, 1498, 1649, 1846, 2030, 2264, 2484, 2759, 3024, 3348, 3659, 4041, 4409, 4855, 5287, 5809
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

T(a) is given by A027590. [From Max Alekseyev, Feb 20 2010]


REFERENCES

S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.


LINKS

Table of n, a(n) for n=0..53.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]


FORMULA

Define T:a>b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 3 do not occur more than once.


CROSSREFS

Sequence in context: A227134 A240013 A050366 * A027596 A007213 A097851
Adjacent sequences: A027588 A027589 A027590 * A027592 A027593 A027594


KEYWORD

nonn,eigen


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Max Alekseyev, Feb 20 2010


STATUS

approved



