

A027590


Sequence satisfies T^2(a)=a, where T is defined below.


1



1, 2, 2, 4, 4, 6, 7, 11, 12, 16, 18, 25, 28, 36, 41, 53, 59, 73, 82, 102, 115, 138, 155, 185, 208, 244, 273, 321, 359, 415, 461, 533, 593, 678, 751, 857, 948, 1071, 1182, 1334, 1472, 1649, 1813, 2027, 2225, 2475, 2712, 3011, 3295, 3640, 3974, 4381, 4779, 5251
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

T(a) is given by A027591. [From Max Alekseyev, Feb 20 2010]


REFERENCES

S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.


LINKS

Table of n, a(n) for n=0..53.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]


FORMULA

Define T:a>b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 3 do not occur more than once.


CROSSREFS

Sequence in context: A078374 A341697 A242984 * A007212 A027595 A261797
Adjacent sequences: A027587 A027588 A027589 * A027591 A027592 A027593


KEYWORD

nonn,eigen


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Max Alekseyev, Feb 20 2010


STATUS

approved



